-
Notifications
You must be signed in to change notification settings - Fork 357
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add customized static cache implementation
- Loading branch information
1 parent
28cfabb
commit e31ff36
Showing
3 changed files
with
165 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,148 @@ | ||
# Copyright (c) Meta Platforms, Inc. and affiliates. | ||
# All rights reserved. | ||
# | ||
# This source code is licensed under the BSD-style license found in the | ||
# LICENSE file in the root directory of this source tree. | ||
from typing import Any, Dict, List, Optional, Tuple | ||
|
||
import torch | ||
from transformers import PretrainedConfig, StaticCache | ||
|
||
|
||
class ETStaticCache(torch.nn.Module, StaticCache): | ||
""" | ||
Static Cache class to be used with `torch.compile(model)`. | ||
Parameters: | ||
config (`PretrainedConfig): | ||
The configuration file defining the shape-related attributes required to initialize the static cache. | ||
max_batch_size (`int`): | ||
The maximum batch size with which the model will be used. | ||
max_cache_len (`int`): | ||
The maximum sequence length with which the model will be used. | ||
device (`torch.device`): | ||
The device on which the cache should be initialized. Should be the same as the layer. | ||
dtype (*optional*, defaults to `torch.float32`): | ||
The default `dtype` to use when initializing the layer. | ||
""" | ||
|
||
def __init__( | ||
self, | ||
config: PretrainedConfig, | ||
max_batch_size: int, | ||
max_cache_len: int, | ||
device, | ||
dtype=torch.float32, | ||
) -> None: | ||
super().__init__() | ||
self.max_batch_size = max_batch_size | ||
self.max_cache_len = ( | ||
config.max_position_embeddings if max_cache_len is None else max_cache_len | ||
) | ||
# Some model define a custom `head_dim` != config.hidden_size // config.num_attention_heads | ||
self.head_dim = ( | ||
config.head_dim | ||
if hasattr(config, "head_dim") | ||
else config.hidden_size // config.num_attention_heads | ||
) | ||
self.dtype = dtype if dtype is not None else torch.float32 | ||
self.num_key_value_heads = ( | ||
config.num_attention_heads | ||
if config.num_key_value_heads is None | ||
else config.num_key_value_heads | ||
) | ||
self.key_cache: List[torch.Tensor] = [] | ||
self.value_cache: List[torch.Tensor] = [] | ||
cache_shape = ( | ||
max_batch_size, | ||
self.num_key_value_heads, | ||
self.max_cache_len, | ||
self.head_dim, | ||
) | ||
for idx in range(config.num_hidden_layers): | ||
# Note: `mark_static_address` is used to tag the cache as a fixed data pointer, preventing cuda graph | ||
# breaks when updating the cache. | ||
self.register_buffer( | ||
f"key_cache_{idx}", torch.zeros(cache_shape, dtype=dtype, device=device) | ||
) | ||
self.register_buffer( | ||
f"val_cache_{idx}", torch.zeros(cache_shape, dtype=dtype, device=device) | ||
) | ||
key_cache = getattr(self, f"key_cache_{idx}") | ||
val_cache = getattr(self, f"val_cache_{idx}") | ||
torch._dynamo.mark_static_address(key_cache) | ||
torch._dynamo.mark_static_address(val_cache) | ||
self.key_cache.append(key_cache) | ||
self.value_cache.append(val_cache) | ||
|
||
def update( | ||
self, | ||
key_states: torch.Tensor, | ||
value_states: torch.Tensor, | ||
layer_idx: int, | ||
cache_kwargs: Optional[Dict[str, Any]] = None, | ||
) -> Tuple[torch.Tensor, torch.Tensor]: | ||
""" | ||
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`. | ||
It is VERY important to index using a tensor, otherwise you introduce a copy to the device. | ||
Parameters: | ||
key_states (`torch.Tensor`): | ||
The new key states to cache. | ||
value_states (`torch.Tensor`): | ||
The new value states to cache. | ||
layer_idx (`int`): | ||
The index of the layer to cache the states for. | ||
cache_kwargs (`Dict[str, Any]`, `optional`): | ||
Additional arguments for the cache subclass. The `StaticCache` needs the `cache_position` input | ||
to know how where to write in the cache. | ||
Return: | ||
A tuple containing the updated key and value states. | ||
""" | ||
cache_position = cache_kwargs.get("cache_position") | ||
k_out = self.key_cache[layer_idx] | ||
v_out = self.value_cache[layer_idx] | ||
k_out[:, :, cache_position] = key_states | ||
v_out[:, :, cache_position] = value_states | ||
seq_len = self.get_seq_length(layer_idx) | ||
return ( | ||
k_out[:, :, torch.arange(0, seq_len, device=k_out.device), :], | ||
v_out[:, :, torch.arange(0, seq_len, device=v_out.device), :], | ||
) | ||
|
||
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int: | ||
"""Returns the sequence length of the cached states that were seen by the model.""" | ||
# Occupied cache == any slot in the 3rd dim (sequence length) holds a non-zero value. To save on compute, let's | ||
# limit the check to the first batch member and head dimension. | ||
# TODO: deprecate this function in favor of `cache_position` | ||
return (self.key_cache[layer_idx][0, 0].any(dim=-1)).sum().item() | ||
|
||
def get_usable_length( | ||
self, new_seq_length: int, layer_idx: Optional[int] = 0 | ||
) -> int: | ||
return self.get_seq_length(layer_idx) | ||
|
||
def get_max_length(self) -> Optional[int]: | ||
"""Returns the maximum sequence length of the cached states.""" | ||
return self.max_cache_len | ||
|
||
def reset(self): | ||
"""Resets the cache values while preserving the objects""" | ||
for layer_idx in range(len(self.key_cache)): | ||
# In-place ops prevent breaking the static address | ||
self.key_cache[layer_idx].zero_() | ||
self.value_cache[layer_idx].zero_() | ||
|
||
def from_legacy_cache( | ||
self, | ||
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | ||
cache_kwargs: Optional[Dict[str, Any]] = None, | ||
): | ||
if past_key_values is not None: | ||
for layer_idx in range(len(past_key_values)): | ||
key_states, value_states = past_key_values[layer_idx] | ||
self.update(key_states, value_states, layer_idx, cache_kwargs) | ||
|
||
def __hash__(self): | ||
return id(self) | ||
|
||
def __eq__(self, other): | ||
return id(self) == id(other) |