Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Gpu test workflow #73

Closed
wants to merge 1 commit into from
Closed

Conversation

ninginthecloud
Copy link
Contributor

Please read through our contribution guide prior to creating your pull request.

Summary:
Update workflow with gpu test.

Test plan:

Fixes #{issue number}

@facebook-github-bot facebook-github-bot added the CLA Signed This label is managed by the Facebook bot. Authors need to sign the CLA before a PR can be reviewed. label Oct 28, 2022
examples/distributed_example.py Outdated Show resolved Hide resolved
.github/workflows/unit_test.yaml Outdated Show resolved Hide resolved
@ninginthecloud ninginthecloud changed the title Gpu workflow Gpu test workflow Oct 28, 2022
@codecov
Copy link

codecov bot commented Oct 28, 2022

Codecov Report

Merging #73 (3b20d1f) into main (3e60825) will increase coverage by 0.29%.
The diff coverage is 100.00%.

@@            Coverage Diff             @@
##             main      #73      +/-   ##
==========================================
+ Coverage   95.00%   95.29%   +0.29%     
==========================================
  Files         143      143              
  Lines        7987     7991       +4     
==========================================
+ Hits         7588     7615      +27     
+ Misses        399      376      -23     
Impacted Files Coverage Δ
tests/metrics/test_toolkit.py 99.21% <100.00%> (+15.47%) ⬆️
torcheval/metrics/classification/auroc.py 98.79% <0.00%> (+1.20%) ⬆️
torcheval/metrics/toolkit.py 95.58% <0.00%> (+4.41%) ⬆️

📣 We’re building smart automated test selection to slash your CI/CD build times. Learn more

@ninginthecloud ninginthecloud force-pushed the gpu_workflow branch 2 times, most recently from 3e7f03e to cc61fd3 Compare December 9, 2022 04:40
@facebook-github-bot
Copy link
Contributor

@ninginthecloud has imported this pull request. If you are a Meta employee, you can view this diff on Phabricator.

ninginthecloud added a commit to ninginthecloud/torcheval that referenced this pull request Dec 9, 2022
Summary:
Please read through our [contribution guide](https://github.com/pytorch-labs/torcheval/blob/main/CONTRIBUTING.md) prior to creating your pull request.
Update workflow with gpu test.

Pull Request resolved: pytorch#73

Test Plan: Fixes #{issue number}

Reviewed By: ananthsub

Differential Revision: D41878301

Pulled By: ninginthecloud

fbshipit-source-id: 8816c28798153ecef14c42f2e455ac0b99a20fa2
@facebook-github-bot
Copy link
Contributor

This pull request was exported from Phabricator. Differential Revision: D41878301

Summary:
Please read through our [contribution guide](https://github.com/pytorch-labs/torcheval/blob/main/CONTRIBUTING.md) prior to creating your pull request.
Update workflow with gpu test.

Pull Request resolved: pytorch#73

Test Plan: Fixes #{issue number}

Reviewed By: ananthsub

Differential Revision: D41878301

Pulled By: ninginthecloud

fbshipit-source-id: 8f25109f8c075a6ec3e1a02facc76efd29afb891
@facebook-github-bot
Copy link
Contributor

This pull request was exported from Phabricator. Differential Revision: D41878301

bobakfb added a commit to bobakfb/torcheval that referenced this pull request Jan 25, 2023
Summary:
# TorchEval Version 0.0.6

## Change Log

 - New metrics:
   - AUC
   - Binary, Multiclass, Multilabel AUPRC (also called Average Precision) pytorch#108 pytorch#109
   - Multilabel Precision Recall Curve pytorch#87
   - Recall at Fixed Precision pytorch#88 pytorch#91
   - Windowed Mean Square Error pytorch#72 pytorch#86
   - Blue Score pytorch#93 pytorch#95
   - Perplexity pytorch#90
   - Word Error Rate pytorch#97
   - Word Information Loss pytorch#111
   - Word Information Preserved pytorch#110
 - Features
   - Added Sync for Dictionaries of Metrics pytorch#98
   - Improved FLOPS counter pytorch#81
   - Improved Module Summary, added forward elapsed times pytorch#100 pytorch#103 pytorch#104 pytorch#105 pytorch#114
   - AUROC now supports weighted inputs pytorch#94
 - Other
   - Improved Documentation pytorch#80 pytorch#117 pytorch#121
   - Added Module Summary to Quickstart pytorch#113
   - Updates several unit tests pytorch#77 pytorch#96 pytorch#101 pytorch#73
   - Docs Automatically Add New Metrics pytorch#118
   - Several Aggregation Metrics now Support fp64 pytorch#116 pytorch#123

### [BETA] Sync Dictionaries of Metrics

We're looking forward to building tooling for metric collections. The first important feature towards this end is collective syncing of groups of metrics. In the example below, we show how easy it is to sync all your metrics at the same time with `sync_and_compute_collection`.

This method is not only for convenience, on the backend we only use one torch distributed sync collective for the entire group of metrics, meaning that the overhead from repeated network directives is maximally reduced.

```python
import torch
from torcheval.metrics import BinaryAUPRC, BinaryAUROC, BinaryAccuracy
from torcheval.metrics.toolkit import sync_and_compute_collection, reset_metrics

# Collections should be Dict[str, Metric]
train_metrics = {
    "train_auprc": BinaryAUPRC(),
    "train_auroc": BinaryAUROC(),
    "train_accuracy": BinaryAccuracy(),
}

# Hydrate metrics with some random data
preds = torch.rand(size=(100,))
targets = torch.randint(low=0, high=2, size=(100,))

for name, metric in train_metrics.items():
    metric.update(preds, targets)

# Sync the whole group with a single gather
print(sync_and_compute_collection(train_metrics))
>>> {'train_auprc': tensor(0.5913), 'train_auroc': tensor(0.5161, dtype=torch.float64), 'train_accuracy': tensor(0.5100)}

# reset all metrics in collection
reset_metrics(train_metrics.values())
```

Be on the lookout for more metric collection code coming in future releases.

## Contributors

We're grateful for our community, which helps us improving torcheval by highlighting issues and contributing code. The following persons have contributed patches for this release: Rohit Alekar lindawangg Julia Reinspach jingchi-wang Ekta Sardana williamhufb @\andreasfloros Erika Lal samiwilf

Reviewed By: ananthsub

Differential Revision: D42737308

fbshipit-source-id: 4c9d72ce73a35636d7cd6421926a23a80250e267
@bobakfb bobakfb mentioned this pull request Jan 25, 2023
facebook-github-bot pushed a commit that referenced this pull request Jan 25, 2023
Summary:
Pull Request resolved: #124

# TorchEval Version 0.0.6

## Change Log

 - New metrics:
   - AUC
   - Binary, Multiclass, Multilabel AUPRC (also called Average Precision) #108 #109
   - Multilabel Precision Recall Curve #87
   - Recall at Fixed Precision #88 #91
   - Windowed Mean Square Error #72 #86
   - Blue Score #93 #95
   - Perplexity #90
   - Word Error Rate #97
   - Word Information Loss #111
   - Word Information Preserved #110
 - Features
   - Added Sync for Dictionaries of Metrics #98
   - Improved FLOPS counter #81
   - Improved Module Summary, added forward elapsed times #100 #103 #104 #105 #114
   - AUROC now supports weighted inputs #94
 - Other
   - Improved Documentation #80 #117 #121
   - Added Module Summary to Quickstart #113
   - Updates several unit tests #77 #96 #101 #73
   - Docs Automatically Add New Metrics #118
   - Several Aggregation Metrics now Support fp64 #116 #123

### [BETA] Sync Dictionaries of Metrics

We're looking forward to building tooling for metric collections. The first important feature towards this end is collective syncing of groups of metrics. In the example below, we show how easy it is to sync all your metrics at the same time with `sync_and_compute_collection`.

This method is not only for convenience, on the backend we only use one torch distributed sync collective for the entire group of metrics, meaning that the overhead from repeated network directives is maximally reduced.

```python
import torch
from torcheval.metrics import BinaryAUPRC, BinaryAUROC, BinaryAccuracy
from torcheval.metrics.toolkit import sync_and_compute_collection, reset_metrics

# Collections should be Dict[str, Metric]
train_metrics = {
    "train_auprc": BinaryAUPRC(),
    "train_auroc": BinaryAUROC(),
    "train_accuracy": BinaryAccuracy(),
}

# Hydrate metrics with some random data
preds = torch.rand(size=(100,))
targets = torch.randint(low=0, high=2, size=(100,))

for name, metric in train_metrics.items():
    metric.update(preds, targets)

# Sync the whole group with a single gather
print(sync_and_compute_collection(train_metrics))
>>> {'train_auprc': tensor(0.5913), 'train_auroc': tensor(0.5161, dtype=torch.float64), 'train_accuracy': tensor(0.5100)}

# reset all metrics in collection
reset_metrics(train_metrics.values())
```

Be on the lookout for more metric collection code coming in future releases.

## Contributors

We're grateful for our community, which helps us improving torcheval by highlighting issues and contributing code. The following persons have contributed patches for this release: Rohit Alekar lindawangg Julia Reinspach jingchi-wang Ekta Sardana williamhufb @\andreasfloros Erika Lal samiwilf

Reviewed By: ananthsub

Differential Revision: D42737308

fbshipit-source-id: dfd852345e1a9f3069ea33b056f5a60a3adde5aa
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
CLA Signed This label is managed by the Facebook bot. Authors need to sign the CLA before a PR can be reviewed.
Projects
None yet
Development

Successfully merging this pull request may close these issues.

4 participants