-
Notifications
You must be signed in to change notification settings - Fork 47
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Gpu test workflow #73
Conversation
4906741
to
5d7a765
Compare
Codecov Report
@@ Coverage Diff @@
## main #73 +/- ##
==========================================
+ Coverage 95.00% 95.29% +0.29%
==========================================
Files 143 143
Lines 7987 7991 +4
==========================================
+ Hits 7588 7615 +27
+ Misses 399 376 -23
📣 We’re building smart automated test selection to slash your CI/CD build times. Learn more |
20abe7a
to
05fd652
Compare
05fd652
to
8efd87a
Compare
3e7f03e
to
cc61fd3
Compare
@ninginthecloud has imported this pull request. If you are a Meta employee, you can view this diff on Phabricator. |
Summary: Please read through our [contribution guide](https://github.com/pytorch-labs/torcheval/blob/main/CONTRIBUTING.md) prior to creating your pull request. Update workflow with gpu test. Pull Request resolved: pytorch#73 Test Plan: Fixes #{issue number} Reviewed By: ananthsub Differential Revision: D41878301 Pulled By: ninginthecloud fbshipit-source-id: 8816c28798153ecef14c42f2e455ac0b99a20fa2
cc61fd3
to
dd419e5
Compare
This pull request was exported from Phabricator. Differential Revision: D41878301 |
Summary: Please read through our [contribution guide](https://github.com/pytorch-labs/torcheval/blob/main/CONTRIBUTING.md) prior to creating your pull request. Update workflow with gpu test. Pull Request resolved: pytorch#73 Test Plan: Fixes #{issue number} Reviewed By: ananthsub Differential Revision: D41878301 Pulled By: ninginthecloud fbshipit-source-id: 8f25109f8c075a6ec3e1a02facc76efd29afb891
dd419e5
to
3b20d1f
Compare
This pull request was exported from Phabricator. Differential Revision: D41878301 |
Summary: # TorchEval Version 0.0.6 ## Change Log - New metrics: - AUC - Binary, Multiclass, Multilabel AUPRC (also called Average Precision) pytorch#108 pytorch#109 - Multilabel Precision Recall Curve pytorch#87 - Recall at Fixed Precision pytorch#88 pytorch#91 - Windowed Mean Square Error pytorch#72 pytorch#86 - Blue Score pytorch#93 pytorch#95 - Perplexity pytorch#90 - Word Error Rate pytorch#97 - Word Information Loss pytorch#111 - Word Information Preserved pytorch#110 - Features - Added Sync for Dictionaries of Metrics pytorch#98 - Improved FLOPS counter pytorch#81 - Improved Module Summary, added forward elapsed times pytorch#100 pytorch#103 pytorch#104 pytorch#105 pytorch#114 - AUROC now supports weighted inputs pytorch#94 - Other - Improved Documentation pytorch#80 pytorch#117 pytorch#121 - Added Module Summary to Quickstart pytorch#113 - Updates several unit tests pytorch#77 pytorch#96 pytorch#101 pytorch#73 - Docs Automatically Add New Metrics pytorch#118 - Several Aggregation Metrics now Support fp64 pytorch#116 pytorch#123 ### [BETA] Sync Dictionaries of Metrics We're looking forward to building tooling for metric collections. The first important feature towards this end is collective syncing of groups of metrics. In the example below, we show how easy it is to sync all your metrics at the same time with `sync_and_compute_collection`. This method is not only for convenience, on the backend we only use one torch distributed sync collective for the entire group of metrics, meaning that the overhead from repeated network directives is maximally reduced. ```python import torch from torcheval.metrics import BinaryAUPRC, BinaryAUROC, BinaryAccuracy from torcheval.metrics.toolkit import sync_and_compute_collection, reset_metrics # Collections should be Dict[str, Metric] train_metrics = { "train_auprc": BinaryAUPRC(), "train_auroc": BinaryAUROC(), "train_accuracy": BinaryAccuracy(), } # Hydrate metrics with some random data preds = torch.rand(size=(100,)) targets = torch.randint(low=0, high=2, size=(100,)) for name, metric in train_metrics.items(): metric.update(preds, targets) # Sync the whole group with a single gather print(sync_and_compute_collection(train_metrics)) >>> {'train_auprc': tensor(0.5913), 'train_auroc': tensor(0.5161, dtype=torch.float64), 'train_accuracy': tensor(0.5100)} # reset all metrics in collection reset_metrics(train_metrics.values()) ``` Be on the lookout for more metric collection code coming in future releases. ## Contributors We're grateful for our community, which helps us improving torcheval by highlighting issues and contributing code. The following persons have contributed patches for this release: Rohit Alekar lindawangg Julia Reinspach jingchi-wang Ekta Sardana williamhufb @\andreasfloros Erika Lal samiwilf Reviewed By: ananthsub Differential Revision: D42737308 fbshipit-source-id: 4c9d72ce73a35636d7cd6421926a23a80250e267
Summary: Pull Request resolved: #124 # TorchEval Version 0.0.6 ## Change Log - New metrics: - AUC - Binary, Multiclass, Multilabel AUPRC (also called Average Precision) #108 #109 - Multilabel Precision Recall Curve #87 - Recall at Fixed Precision #88 #91 - Windowed Mean Square Error #72 #86 - Blue Score #93 #95 - Perplexity #90 - Word Error Rate #97 - Word Information Loss #111 - Word Information Preserved #110 - Features - Added Sync for Dictionaries of Metrics #98 - Improved FLOPS counter #81 - Improved Module Summary, added forward elapsed times #100 #103 #104 #105 #114 - AUROC now supports weighted inputs #94 - Other - Improved Documentation #80 #117 #121 - Added Module Summary to Quickstart #113 - Updates several unit tests #77 #96 #101 #73 - Docs Automatically Add New Metrics #118 - Several Aggregation Metrics now Support fp64 #116 #123 ### [BETA] Sync Dictionaries of Metrics We're looking forward to building tooling for metric collections. The first important feature towards this end is collective syncing of groups of metrics. In the example below, we show how easy it is to sync all your metrics at the same time with `sync_and_compute_collection`. This method is not only for convenience, on the backend we only use one torch distributed sync collective for the entire group of metrics, meaning that the overhead from repeated network directives is maximally reduced. ```python import torch from torcheval.metrics import BinaryAUPRC, BinaryAUROC, BinaryAccuracy from torcheval.metrics.toolkit import sync_and_compute_collection, reset_metrics # Collections should be Dict[str, Metric] train_metrics = { "train_auprc": BinaryAUPRC(), "train_auroc": BinaryAUROC(), "train_accuracy": BinaryAccuracy(), } # Hydrate metrics with some random data preds = torch.rand(size=(100,)) targets = torch.randint(low=0, high=2, size=(100,)) for name, metric in train_metrics.items(): metric.update(preds, targets) # Sync the whole group with a single gather print(sync_and_compute_collection(train_metrics)) >>> {'train_auprc': tensor(0.5913), 'train_auroc': tensor(0.5161, dtype=torch.float64), 'train_accuracy': tensor(0.5100)} # reset all metrics in collection reset_metrics(train_metrics.values()) ``` Be on the lookout for more metric collection code coming in future releases. ## Contributors We're grateful for our community, which helps us improving torcheval by highlighting issues and contributing code. The following persons have contributed patches for this release: Rohit Alekar lindawangg Julia Reinspach jingchi-wang Ekta Sardana williamhufb @\andreasfloros Erika Lal samiwilf Reviewed By: ananthsub Differential Revision: D42737308 fbshipit-source-id: dfd852345e1a9f3069ea33b056f5a60a3adde5aa
Please read through our contribution guide prior to creating your pull request.
Summary:
Update workflow with gpu test.
Test plan:
Fixes #{issue number}