Skip to content

Commit

Permalink
FIX: Redirect old Loading data in PyTorch to newer Datasets & DataLoa…
Browse files Browse the repository at this point in the history
…ders (#2922)

* add redirect to data tutorial
---------

Co-authored-by: Svetlana Karslioglu <[email protected]>
  • Loading branch information
loganthomas and svekars authored Jun 13, 2024
1 parent 7a44230 commit 63f987d
Show file tree
Hide file tree
Showing 6 changed files with 41 additions and 210 deletions.
1 change: 0 additions & 1 deletion .jenkins/validate_tutorials_built.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,6 @@
"prototype_source/nestedtensor",
"recipes_source/recipes/saving_and_loading_models_for_inference",
"recipes_source/recipes/saving_multiple_models_in_one_file",
"recipes_source/recipes/loading_data_recipe",
"recipes_source/recipes/tensorboard_with_pytorch",
"recipes_source/recipes/what_is_state_dict",
"recipes_source/recipes/profiler_recipe",
Expand Down
8 changes: 8 additions & 0 deletions recipes_source/loading_data_recipe.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
Loading data in PyTorch
=======================

The content is deprecated. See `Datasets & DataLoaders <https://pytorch.org/tutorials/beginner/basics/data_tutorial.html>`__ instead.

.. raw:: html

<meta http-equiv="Refresh" content="1; url='https://pytorch.org/tutorials/beginner/basics/data_tutorial.html'" />
32 changes: 14 additions & 18 deletions recipes_source/recipes/README.txt
Original file line number Diff line number Diff line change
@@ -1,62 +1,58 @@
PyTorch Recipes
---------------------------------------------
1. loading_data_recipe.py
Loading Data in PyTorch
https://pytorch.org/tutorials/recipes/recipes/loading_data_recipe.html

2. defining_a_neural_network.py
1. defining_a_neural_network.py
Defining a Neural Network in PyTorch
https://pytorch.org/tutorials/recipes/recipes/defining_a_neural_network.html

3. what_is_state_dict.py
2. what_is_state_dict.py
What is a state_dict in PyTorch
https://pytorch.org/tutorials/recipes/recipes/what_is_state_dict.html

4. saving_and_loading_models_for_inference.py
3. saving_and_loading_models_for_inference.py
Saving and loading models for inference in PyTorch
https://pytorch.org/tutorials/recipes/recipes/saving_and_loading_models_for_inference.html

5. custom_dataset_transforms_loader.py
4. custom_dataset_transforms_loader.py
Developing Custom PyTorch Dataloaders
https://pytorch.org/tutorials/recipes/recipes/custom_dataset_transforms_loader.html


6. Captum_Recipe.py
5. Captum_Recipe.py
Model Interpretability using Captum
https://pytorch.org/tutorials/recipes/recipes/Captum_Recipe.html

7. dynamic_quantization.py
6. dynamic_quantization.py
Dynamic Quantization
https://pytorch.org/tutorials/recipes/recipes/dynamic_quantization.html

8. save_load_across_devices.py
7. save_load_across_devices.py
Saving and loading models across devices in PyTorch
https://pytorch.org/tutorials/recipes/recipes/save_load_across_devices.html

9. saving_and_loading_a_general_checkpoint.py
8. saving_and_loading_a_general_checkpoint.py
Saving and loading a general checkpoint in PyTorch
https://pytorch.org/tutorials/recipes/recipes/saving_and_loading_a_general_checkpoint.html

10. saving_and_loading_models_for_inference.py
9. saving_and_loading_models_for_inference.py
Saving and loading models for inference in PyTorch
https://pytorch.org/tutorials/recipes/recipes/saving_and_loading_models_for_inference.html

11. saving_multiple_models_in_one_file.py
10. saving_multiple_models_in_one_file.py
Saving and loading multiple models in one file using PyTorch
https://pytorch.org/tutorials/recipes/recipes/saving_multiple_models_in_one_file.html

12. warmstarting_model_using_parameters_from_a_different_model.py
11. warmstarting_model_using_parameters_from_a_different_model.py
Warmstarting models using parameters from different model
https://pytorch.org/tutorials/recipes/recipes/warmstarting_model_using_parameters_from_a_different_model.html

13. zeroing_out_gradients.py
12. zeroing_out_gradients.py
Zeroing out gradients
https://pytorch.org/tutorials/recipes/recipes/zeroing_out_gradients.html

14. mobile_perf.py
13. mobile_perf.py
PyTorch Mobile Performance Recipes
https://pytorch.org/tutorials/recipes/mobile_perf.html

15. amp_recipe.py
14. amp_recipe.py
Automatic Mixed Precision
https://pytorch.org/tutorials/recipes/amp_recipe.html
163 changes: 0 additions & 163 deletions recipes_source/recipes/loading_data_recipe.py

This file was deleted.

38 changes: 19 additions & 19 deletions recipes_source/recipes/zeroing_out_gradients.py
Original file line number Diff line number Diff line change
Expand Up @@ -44,23 +44,23 @@
######################################################################
# Steps
# -----
#
#
# Steps 1 through 4 set up our data and neural network for training. The
# process of zeroing out the gradients happens in step 5. If you already
# have your data and neural network built, skip to 5.
#
#
# 1. Import all necessary libraries for loading our data
# 2. Load and normalize the dataset
# 3. Build the neural network
# 4. Define the loss function
# 5. Zero the gradients while training the network
#
#
# 1. Import necessary libraries for loading our data
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
#
# For this recipe, we will just be using ``torch`` and ``torchvision`` to
# access the dataset.
#
#

import torch

Expand All @@ -76,10 +76,10 @@
######################################################################
# 2. Load and normalize the dataset
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
#
# PyTorch features various built-in datasets (see the Loading Data recipe
# for more information).
#
#

transform = transforms.Compose(
[transforms.ToTensor(),
Expand All @@ -102,10 +102,10 @@
######################################################################
# 3. Build the neural network
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
#
# We will use a convolutional neural network. To learn more see the
# Defining a Neural Network recipe.
#
#

class Net(nn.Module):
def __init__(self):
Expand All @@ -130,9 +130,9 @@ def forward(self, x):
######################################################################
# 4. Define a Loss function and optimizer
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
#
# Let’s use a Classification Cross-Entropy loss and SGD with momentum.
#
#

net = Net()
criterion = nn.CrossEntropyLoss()
Expand All @@ -142,14 +142,14 @@ def forward(self, x):
######################################################################
# 5. Zero the gradients while training the network
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
#
# This is when things start to get interesting. We simply have to loop
# over our data iterator, and feed the inputs to the network and optimize.
#
#
# Notice that for each entity of data, we zero out the gradients. This is
# to ensure that we aren’t tracking any unnecessary information when we
# train our neural network.
#
#

for epoch in range(2): # loop over the dataset multiple times

Expand Down Expand Up @@ -181,13 +181,13 @@ def forward(self, x):
# You can also use ``model.zero_grad()``. This is the same as using
# ``optimizer.zero_grad()`` as long as all your model parameters are in
# that optimizer. Use your best judgment to decide which one to use.
#
#
# Congratulations! You have successfully zeroed out gradients PyTorch.
#
#
# Learn More
# ----------
#
#
# Take a look at these other recipes to continue your learning:
#
# - `Loading data in PyTorch <https://pytorch.org/tutorials/recipes/recipes/loading_data_recipe.html>`__
#
# - `Loading data in PyTorch <https://pytorch.org/tutorials/beginner/basics/data_tutorial.html>`__
# - `Saving and loading models across devices in PyTorch <https://pytorch.org/tutorials/recipes/recipes/save_load_across_devices.html>`__
9 changes: 0 additions & 9 deletions recipes_source/recipes_index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -30,14 +30,6 @@ Recipes are bite-sized, actionable examples of how to use specific PyTorch featu
.. Basics
.. customcarditem::
:header: Loading data in PyTorch
:card_description: Learn how to use PyTorch packages to prepare and load common datasets for your model.
:image: ../_static/img/thumbnails/cropped/loading-data.PNG
:link: ../recipes/recipes/loading_data_recipe.html
:tags: Basics


.. customcarditem::
:header: Defining a Neural Network
:card_description: Learn how to use PyTorch's torch.nn package to create and define a neural network for the MNIST dataset.
Expand Down Expand Up @@ -407,7 +399,6 @@ Recipes are bite-sized, actionable examples of how to use specific PyTorch featu
.. toctree::
:hidden:

/recipes/recipes/loading_data_recipe
/recipes/recipes/defining_a_neural_network
/recipes/torch_logs
/recipes/recipes/what_is_state_dict
Expand Down

0 comments on commit 63f987d

Please sign in to comment.