Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[dtensor][debug] CommDebugMode recipe #3001

Merged
merged 4 commits into from
Aug 19, 2024
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
211 changes: 211 additions & 0 deletions recipes_source/distributed_comm_debug_mode.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,211 @@
Using CommDebugMode
svekars marked this conversation as resolved.
Show resolved Hide resolved
=====================================================

**Author**: `Anshul Sinha <https://github.com/sinhaanshul>`__


In this tutorial, we will explore how to use CommDebugMode with PyTorch's
svekars marked this conversation as resolved.
Show resolved Hide resolved
DistributedTensor (DTensor) for debugging by tracking collective operations in distributed training environments.

Prerequisites
---------------------

* Python 3.8 - 3.11
* PyTorch 2.2 or later


What is CommDebugMode and why is it useful
svekars marked this conversation as resolved.
Show resolved Hide resolved
------------------------------------------
svekars marked this conversation as resolved.
Show resolved Hide resolved
As the size of models continues to increase, users are seeking to leverage various combinations
of parallel strategies to scale up distributed training. However, the lack of interoperability
between existing solutions poses a significant challenge, primarily due to the absence of a
unified abstraction that can bridge these different parallelism strategies. To address this
issue, PyTorch has proposed `DistributedTensor(DTensor)
<https://github.com/pytorch/pytorch/blob/main/torch/distributed/_tensor/examples/comm_mode_features_example.py>`_
which abstracts away the complexities of tensor communication in distributed training,
providing a seamless user experience. However, when dealing with existing parallelism solutions and
developing parallelism solutions using the unified abstraction like DTensor, the lack of transparency
about what and when the collective communications happens under the hood could make it challenging
for advanced users to identify and resolve issues. To address this challenge, ``CommDebugMode``, a
Python context manager will serve as one of the primary debugging tools for DTensors, enabling
users to view when and why collective operations are happening when using DTensors, effectively
addressing this issue.


How to use CommDebugMode
svekars marked this conversation as resolved.
Show resolved Hide resolved
------------------------

Here is how you can use ``CommDebugMode``:

.. code-block:: python

# The model used in this example is a MLPModule applying Tensor Parallel
comm_mode = CommDebugMode()
with comm_mode:
output = model(inp)

# print the operation level collective tracing information
print(comm_mode.generate_comm_debug_tracing_table(noise_level=0))

# log the operation level collective tracing information to a file
comm_mode.log_comm_debug_tracing_table_to_file(
noise_level=1, file_name="transformer_operation_log.txt"
)

# dump the operation level collective tracing information to json file,
# used in the visual browser below
comm_mode.generate_json_dump(noise_level=2)

svekars marked this conversation as resolved.
Show resolved Hide resolved
.. code-block:: python

"""
svekars marked this conversation as resolved.
Show resolved Hide resolved
This is what the output looks like for a MLPModule at noise level 0
svekars marked this conversation as resolved.
Show resolved Hide resolved
Expected Output:
Global
FORWARD PASS
*c10d_functional.all_reduce: 1
MLPModule
FORWARD PASS
*c10d_functional.all_reduce: 1
MLPModule.net1
MLPModule.relu
MLPModule.net2
FORWARD PASS
*c10d_functional.all_reduce: 1
"""
svekars marked this conversation as resolved.
Show resolved Hide resolved

To use ``CommDebugMode``, you must wrap the code running the model in ``CommDebugMode`` and call the API that
you want to use to display the data. You can also use a ``noise_level`` argument to control the verbosity
level of displayed information. Here is what each noise level displays:

| 0. Prints module-level collective counts
| 1. Prints DTensor operations (not including trivial operations), module sharding information
| 2. Prints tensor operations (not including trivial operations)
| 3. Prints all operations

In the example above, you can see that the collective operation, all_reduce, occurs once in the forward pass
of the ``MLPModule``. Furthermore, you can use ``CommDebugMode`` to pinpoint that the all-reduce operation happens
in the second linear layer of the ``MLPModule``.


Below is the interactive module tree visualization that you can use to upload your own JSON dump:

.. raw:: html

<!DOCTYPE html>
<html lang ="en">
<head>
<meta charset="UTF-8">
<meta name = "viewport" content="width=device-width, initial-scale=1.0">
<title>CommDebugMode Module Tree</title>
<style>
ul, #tree-container {
list-style-type: none;
margin: 0;
padding: 0;
}
.caret {
cursor: pointer;
user-select: none;
}
.caret::before {
content: "\25B6";
color:black;
display: inline-block;
margin-right: 6px;
}
.caret-down::before {
transform: rotate(90deg);
}
.tree {
padding-left: 20px;
}
.tree ul {
padding-left: 20px;
}
.nested {
display: none;
}
.active {
display: block;
}
.forward-pass,
.backward-pass {
margin-left: 40px;
}
.forward-pass table {
margin-left: 40px;
width: auto;
}
.forward-pass table td, .forward-pass table th {
padding: 8px;
}
.forward-pass ul {
display: none;
}
table {
font-family: arial, sans-serif;
border-collapse: collapse;
width: 100%;
}
td, th {
border: 1px solid #dddddd;
text-align: left;
padding: 8px;
}
tr:nth-child(even) {
background-color: #dddddd;
}
#drop-area {
position: relative;
width: 25%;
height: 100px;
border: 2px dashed #ccc;
border-radius: 5px;
padding: 0px;
text-align: center;
}
.drag-drop-block {
display: inline-block;
width: 200px;
height: 50px;
background-color: #f7f7f7;
border: 1px solid #ccc;
border-radius: 5px;
padding: 10px;
font-size: 14px;
color: #666;
cursor: pointer;
}
#file-input {
position: absolute;
top: 0;
left: 0;
width: 100%;
height: 100%;
opacity: 0;
}
</style>
</head>
<body>
<div id="drop-area">
<div class="drag-drop-block">
<span>Drag file here</span>
</div>
<input type="file" id="file-input" accept=".json">
</div>
<div id="tree-container"></div>
<script src="https://cdn.jsdelivr.net/gh/pytorch/pytorch@main/torch/distributed/_tensor/debug/comm_mode_broswer_visual.js"></script>
</body>
</html>

Conclusion
------------------------------------------

In this recipe, we have learned how to use ``CommDebugMode`` to debug Distributed Tensors and
parallelism solutions that uses communication collectives with PyTorch. You can use your own
JSON outputs in the embedded visual browser.

For more detailed information about ``CommDebugMode``, see
`comm_mode_features_example.py
<https://github.com/pytorch/pytorch/blob/main/torch/distributed/_tensor/examples/comm_mode_features_example.py>`_
8 changes: 8 additions & 0 deletions recipes_source/recipes_index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -395,6 +395,13 @@ Recipes are bite-sized, actionable examples of how to use specific PyTorch featu
:link: ../recipes/distributed_async_checkpoint_recipe.html
:tags: Distributed-Training

.. customcarditem::
:header: Getting Started with CommDebugMode
:card_description: Learn how to use CommDebugMode for DTensors
:image: ../_static/img/thumbnails/cropped/generic-pytorch-logo.png
:link: ../recipes/distributed_comm_debug_mode.html
:tags: Distributed-Training

.. TorchServe

.. customcarditem::
Expand Down Expand Up @@ -449,3 +456,4 @@ Recipes are bite-sized, actionable examples of how to use specific PyTorch featu
/recipes/cuda_rpc
/recipes/distributed_optim_torchscript
/recipes/mobile_interpreter
/recipes/distributed_comm_debug_mode
Loading