Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add dispersive shift with qutrits #574

Merged
merged 6 commits into from
Nov 2, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions src/qibocal/protocols/characterization/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,7 @@
from .coherence.zeno import zeno
from .coherence.zeno_msr import zeno_msr
from .dispersive_shift import dispersive_shift
from .dispersive_shift_qutrit import dispersive_shift_qutrit
from .fast_reset.fast_reset import fast_reset
from .flipping import flipping
from .flux_dependence.qubit_flux_dependence import qubit_crosstalk, qubit_flux
Expand Down Expand Up @@ -99,3 +100,4 @@ class Operation(Enum):
qubit_spectroscopy_ef = qubit_spectroscopy_ef
qutrit_classification = qutrit_classification
resonator_amplitude = resonator_amplitude
dispersive_shift_qutrit = dispersive_shift_qutrit
301 changes: 301 additions & 0 deletions src/qibocal/protocols/characterization/dispersive_shift_qutrit.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,301 @@
from copy import deepcopy
from dataclasses import asdict, dataclass

import numpy as np
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from qibolab import AcquisitionType, AveragingMode, ExecutionParameters
from qibolab.platform import Platform
from qibolab.pulses import PulseSequence
from qibolab.qubits import QubitId
from qibolab.sweeper import Parameter, Sweeper, SweeperType

from qibocal.auto.operation import Qubits, Results, Routine
from qibocal.protocols.characterization.utils import (
GHZ_TO_HZ,
HZ_TO_GHZ,
V_TO_UV,
lorentzian,
lorentzian_fit,
table_dict,
table_html,
)

from .dispersive_shift import DispersiveShiftData, DispersiveShiftParameters
from .resonator_spectroscopy import ResSpecType


@dataclass
class DispersiveShiftQutritParameters(DispersiveShiftParameters):
"""Dispersive shift inputs."""


@dataclass
class DispersiveShiftQutritResults(Results):
"""Dispersive shift outputs."""

frequency_state_zero: dict[QubitId, float]
"""State zero frequency."""
frequency_state_one: dict[QubitId, float]
"""State one frequency."""
frequency_state_two: dict[QubitId, float]
"""State two frequency."""
fitted_parameters_state_zero: dict[QubitId, dict[str, float]]
"""Fitted parameters state zero."""
fitted_parameters_state_one: dict[QubitId, dict[str, float]]
"""Fitted parameters state one."""
fitted_parameters_state_two: dict[QubitId, dict[str, float]]
"""Fitted parameters state one."""

@property
def state_zero(self):
return {key: value for key, value in asdict(self).items() if "zero" in key}

@property
def state_one(self):
return {key: value for key, value in asdict(self).items() if "one" in key}

@property
def state_two(self):
return {key: value for key, value in asdict(self).items() if "two" in key}


"""Custom dtype for rabi amplitude."""


@dataclass
class DispersiveShiftQutritData(DispersiveShiftData):
"""Dipsersive shift acquisition outputs."""


def _acquisition(
params: DispersiveShiftParameters, platform: Platform, qubits: Qubits
) -> DispersiveShiftQutritData:
r"""
Data acquisition for dispersive shift experiment.
Perform spectroscopy on the readout resonator, with the qubit in ground and excited state, showing
the resonator shift produced by the coupling between the resonator and the qubit.

Args:
params (DispersiveShiftParameters): experiment's parameters
platform (Platform): Qibolab platform object
qubits (dict): list of target qubits to perform the action

"""

# create 3 sequences of pulses for the experiment:
# sequence_0: I - MZ
# sequence_1: RX - MZ
# sequence_2: RX - RX12 - MZ

# taking advantage of multiplexing, apply the same set of gates to all qubits in parallel
sequence_0 = PulseSequence()
sequence_1 = PulseSequence()
sequence_2 = PulseSequence()

for qubit in qubits:
rx_pulse = platform.create_RX_pulse(qubit, start=0)
rx_12_pulse = platform.create_RX12_pulse(qubit, start=rx_pulse.finish)
ro_pulse = platform.create_qubit_readout_pulse(qubit, start=0)
sequence_1.add(rx_pulse)
sequence_2.add(rx_pulse, rx_12_pulse)
for sequence in [sequence_0, sequence_1, sequence_2]:
readout_pulse = deepcopy(ro_pulse)
readout_pulse.start = sequence.qd_pulses.finish
sequence.add(readout_pulse)

# define the parameter to sweep and its range:
delta_frequency_range = np.arange(
-params.freq_width // 2, params.freq_width // 2, params.freq_step
)

data = DispersiveShiftQutritData(resonator_type=platform.resonator_type)

for state, sequence in enumerate([sequence_0, sequence_1, sequence_2]):
sweeper = Sweeper(
Parameter.frequency,
delta_frequency_range,
pulses=list(sequence.ro_pulses),
type=SweeperType.OFFSET,
)

results = platform.sweep(
sequence,
ExecutionParameters(
nshots=params.nshots,
relaxation_time=params.relaxation_time,
acquisition_type=AcquisitionType.INTEGRATION,
averaging_mode=AveragingMode.CYCLIC,
),
sweeper,
)

for qubit in qubits:
result = results[qubit]
# store the results
data.register_qubit(
ResSpecType,
(qubit, state),
dict(
freq=sequence.get_qubit_pulses(qubit).ro_pulses[0].frequency
+ delta_frequency_range,
msr=result.magnitude,
phase=result.phase,
),
)

return data


def _fit(data: DispersiveShiftQutritData) -> DispersiveShiftQutritResults:
"""Post-Processing for dispersive shift"""
qubits = data.qubits

frequency_0 = {}
frequency_1 = {}
frequency_2 = {}
fitted_parameters_0 = {}
fitted_parameters_1 = {}
fitted_parameters_2 = {}

for i in range(3):
for qubit in qubits:
data_i = data[qubit, i]
freq, fitted_params = lorentzian_fit(
data_i, resonator_type=data.resonator_type, fit="resonator"
)
if i == 0:
frequency_0[qubit] = freq
fitted_parameters_0[qubit] = fitted_params
elif i == 1:
frequency_1[qubit] = freq
fitted_parameters_1[qubit] = fitted_params
else:
frequency_2[qubit] = freq
fitted_parameters_2[qubit] = fitted_params

return DispersiveShiftQutritResults(
frequency_state_zero=frequency_0,
frequency_state_one=frequency_1,
frequency_state_two=frequency_2,
fitted_parameters_state_one=fitted_parameters_1,
fitted_parameters_state_zero=fitted_parameters_0,
fitted_parameters_state_two=fitted_parameters_2,
)


def _plot(data: DispersiveShiftQutritData, qubit, fit: DispersiveShiftQutritResults):
"""Plotting function for dispersive shift."""
figures = []
fig = make_subplots(
rows=1,
cols=2,
horizontal_spacing=0.1,
vertical_spacing=0.1,
subplot_titles=(
"MSR (uV)",
"phase (rad)",
),
)
# iterate over multiple data folders

fitting_report = ""

data_0 = data[qubit, 0]
data_1 = data[qubit, 1]
data_2 = data[qubit, 2]
fit_data_0 = fit.state_zero if fit is not None else None
fit_data_1 = fit.state_one if fit is not None else None
fit_data_2 = fit.state_two if fit is not None else None
for i, label, q_data, data_fit in list(
zip(
(0, 1, 2),
("State 0", "State 1", "State 2"),
(data_0, data_1, data_2),
(fit_data_0, fit_data_1, fit_data_2),
)
):
opacity = 1
frequencies = q_data.freq * HZ_TO_GHZ
fig.add_trace(
go.Scatter(
x=frequencies,
y=q_data.msr * V_TO_UV,
opacity=opacity,
name=f"{label}",
showlegend=True,
legendgroup=f"{label}",
),
row=1,
col=1,
)
fig.add_trace(
go.Scatter(
x=frequencies,
y=q_data.phase,
opacity=opacity,
showlegend=False,
legendgroup=f"{label}",
),
row=1,
col=2,
)

if fit is not None:
freqrange = np.linspace(
min(frequencies),
max(frequencies),
2 * len(q_data),
)
params = data_fit[
"fitted_parameters_state_zero"
if i == 0
else (
"fitted_parameters_state_one"
if i == 1
else "fitted_parameters_state_two"
)
][qubit]
fig.add_trace(
go.Scatter(
x=freqrange,
y=lorentzian(freqrange, **params),
name=f"{label} Fit",
line=go.scatter.Line(dash="dot"),
),
row=1,
col=1,
)

if fit is not None:
fitting_report = table_html(
table_dict(
qubit,
[
"State Zero Frequency [Hz]",
"State One Frequency [Hz]",
"State Two Frequency [Hz]",
],
np.round(
[
fit_data_0["frequency_state_zero"][qubit] * GHZ_TO_HZ,
fit_data_1["frequency_state_one"][qubit] * GHZ_TO_HZ,
fit_data_2["frequency_state_two"][qubit] * GHZ_TO_HZ,
]
),
)
)
fig.update_layout(
showlegend=True,
xaxis_title="Frequency (GHz)",
yaxis_title="MSR (uV)",
xaxis2_title="Frequency (GHz)",
yaxis2_title="Phase (rad)",
)

figures.append(fig)

return figures, fitting_report


dispersive_shift_qutrit = Routine(_acquisition, fit=_fit, report=_plot)
10 changes: 10 additions & 0 deletions tests/runcards/protocols.yml
Original file line number Diff line number Diff line change
Expand Up @@ -437,6 +437,16 @@ actions:
freq_step: 100_000
nshots: 10

- id: dispersive shift qutrit
priority: 0
operation: dispersive_shift_qutrit
#FIXME: add qubit 4 with new release of Qibolab
qubits: [0, 1, 2, 3]
parameters:
freq_width: 10_000_000
freq_step: 100_000
nshots: 10

- id: standard rb no error
priority: 0
operation: standard_rb
Expand Down