Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

merge update #30

Merged
merged 9 commits into from
Dec 31, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion cmake/external/box_ps.cmake
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@ IF((NOT DEFINED BOX_PS_VER) OR (NOT DEFINED BOX_PS_URL))
SET(BOX_PS_VER "0.1.1" CACHE STRING "" FORCE)
SET(BOX_PS_NAME "box_ps" CACHE STRING "" FORCE)
#SET(BOX_PS_URL "http://box-ps.gz.bcebos.com/box_ps.tar.gz" CACHE STRING "" FORCE)
SET(BOX_PS_URL "data-im.baidu.com:/home/work/var/CI_DATA/im/static/box_ps.tar.gz/box_ps.tar.gz.20" CACHE STRING "" FORCE)
SET(BOX_PS_URL "data-im.baidu.com:/home/work/var/CI_DATA/im/static/box_ps.tar.gz/box_ps.tar.gz.30" CACHE STRING "" FORCE)
ENDIF()
MESSAGE(STATUS "BOX_PS_NAME: ${BOX_PS_NAME}, BOX_PS_URL: ${BOX_PS_URL}")
SET(BOX_PS_SOURCE_DIR "${THIRD_PARTY_PATH}/box_ps")
Expand Down
44 changes: 26 additions & 18 deletions paddle/fluid/framework/fleet/box_wrapper.cc
Original file line number Diff line number Diff line change
Expand Up @@ -424,6 +424,9 @@ void BoxWrapper::PullSparse(const paddle::platform::Place& place,
feature_type_ == static_cast<int>(boxps::FEATURE_SHOWCLK)) { \
PullSparseCase<boxps::FeaturePullValueGpuQuant<EmbedxDim, ExpandDim>>( \
place, keys, values, slot_lengths, hidden_size, expand_embed_dim); \
} else if (feature_type_ == static_cast<int>(boxps::FEATURE_CONV)) { \
PullSparseCase<boxps::FeaturePullValueGpuConv<EmbedxDim, ExpandDim>>( \
place, keys, values, slot_lengths, hidden_size, expand_embed_dim); \
} else if (feature_type_ == static_cast<int>(boxps::FEATURE_VARIABLE)) { \
PullSparseCase<boxps::FeatureVarPullValueGpu<EmbedxDim, ExpandDim>>( \
place, keys, values, slot_lengths, hidden_size, expand_embed_dim); \
Expand Down Expand Up @@ -475,28 +478,33 @@ void BoxWrapper::PushSparseGrad(const paddle::platform::Place& place,
} \
} break

#define PUSHSPARSE_CASE(i, ...) \
case i: { \
constexpr size_t ExpandDim = i; \
if (feature_type_ == static_cast<int>(boxps::FEATURE_SHARE_EMBEDDING)) { \
PushSparseGradCase< \
boxps::FeaturePushValueGpuShareEmbedding<EmbedxDim, ExpandDim>>( \
place, keys, grad_values, slot_lengths, hidden_size, \
expand_embed_dim, batch_size); \
} else if (feature_type_ == static_cast<int>(boxps::FEATURE_PCOC)) { \
PushSparseGradCase< \
boxps::FeaturePushValueGpuPCOC<EmbedxDim, ExpandDim>>( \
place, keys, grad_values, slot_lengths, hidden_size, \
expand_embed_dim, batch_size); \
#define PUSHSPARSE_CASE(i, ...) \
case i: { \
constexpr size_t ExpandDim = i; \
if (feature_type_ == static_cast<int>(boxps::FEATURE_SHARE_EMBEDDING)) { \
PushSparseGradCase< \
boxps::FeaturePushValueGpuShareEmbedding<EmbedxDim, ExpandDim>>( \
place, keys, grad_values, slot_lengths, hidden_size, \
expand_embed_dim, batch_size); \
} else if (feature_type_ == static_cast<int>(boxps::FEATURE_PCOC)) { \
PushSparseGradCase< \
boxps::FeaturePushValueGpuPCOC<EmbedxDim, ExpandDim>>( \
place, keys, grad_values, slot_lengths, hidden_size, \
expand_embed_dim, batch_size); \
} else if (feature_type_ == static_cast<int>(boxps::FEATURE_VARIABLE)) { \
PushSparseGradCase<boxps::FeatureVarPushValueGpu<EmbedxDim, ExpandDim>>( \
place, keys, grad_values, slot_lengths, hidden_size, \
expand_embed_dim, batch_size); \
} else { \
PushSparseGradCase<boxps::FeaturePushValueGpu<EmbedxDim, ExpandDim>>( \
place, keys, grad_values, slot_lengths, hidden_size, \
expand_embed_dim, batch_size); \
} \
} else if (feature_type_ == static_cast<int>(boxps::FEATURE_CONV)) { \
PushSparseGradCase< \
boxps::FeaturePushValueGpuConv<EmbedxDim, ExpandDim>>( \
place, keys, grad_values, slot_lengths, hidden_size, \
expand_embed_dim, batch_size); \
} else { \
PushSparseGradCase<boxps::FeaturePushValueGpu<EmbedxDim, ExpandDim>>( \
place, keys, grad_values, slot_lengths, hidden_size, \
expand_embed_dim, batch_size); \
} \
} break

CheckEmbedSizeIsValid(hidden_size - cvm_offset_, expand_embed_dim);
Expand Down
24 changes: 24 additions & 0 deletions paddle/fluid/framework/fleet/box_wrapper.cu
Original file line number Diff line number Diff line change
Expand Up @@ -1189,6 +1189,11 @@ void BoxWrapper::CopyForPull(const paddle::platform::Place& place,
stream, gpu_keys, gpu_values, total_values_gpu, hidden_size, \
EmbedxDim, total_length, total_dims, slot_lens, slot_num, key2slot, \
pull_embedx_scale_, cvm_offset_, gpu_restore_idx); \
} else if (feature_type_ == static_cast<int>(boxps::FEATURE_CONV)) { \
FeaturePullCopy<boxps::FeaturePullValueGpuConv<EmbedxDim, ExpandDim>>( \
stream, gpu_keys, gpu_values, total_values_gpu, hidden_size, \
EmbedxDim, total_length, total_dims, slot_lens, slot_num, key2slot, \
pull_embedx_scale_, cvm_offset_, gpu_restore_idx); \
} else { \
FeaturePullCopy<boxps::FeaturePullValueGpu<EmbedxDim, ExpandDim>>( \
stream, gpu_keys, gpu_values, total_values_gpu, hidden_size, \
Expand Down Expand Up @@ -1219,6 +1224,12 @@ void BoxWrapper::CopyForPull(const paddle::platform::Place& place,
stream, gpu_keys, gpu_values, total_values_gpu, hidden_size, \
EmbedxDim, ExpandDim, total_length, total_dims, slot_lens, slot_num, \
key2slot, 1.0, cvm_offset_, gpu_restore_idx); \
} else if (feature_type_ == static_cast<int>(boxps::FEATURE_CONV)) { \
FeaturePullCopyNNCross< \
boxps::FeaturePullValueGpuConv<EmbedxDim, ExpandDim>>( \
stream, gpu_keys, gpu_values, total_values_gpu, hidden_size, \
EmbedxDim, ExpandDim, total_length, total_dims, slot_lens, slot_num, \
key2slot, 1.0, cvm_offset_, gpu_restore_idx); \
} else { \
FeaturePullCopyNNCross< \
boxps::FeaturePullValueGpu<EmbedxDim, ExpandDim>>( \
Expand Down Expand Up @@ -1479,6 +1490,12 @@ void BoxWrapper::CopyForPush(const paddle::platform::Place& place,
total_length, batch_size, d_slot_vector, total_dims, slot_lens, \
slot_num, key2slot, cvm_offset_, gpu_sort_idx, gpu_sort_offset, \
gpu_sort_lens); \
} else if (feature_type_ == static_cast<int>(boxps::FEATURE_CONV)) { \
FeaturePushCopy<boxps::FeaturePushValueGpuConv<EmbedxDim, ExpandDim>>( \
stream, total_grad_values_gpu, grad_values, hidden_size, EmbedxDim, \
total_length, batch_size, d_slot_vector, total_dims, slot_lens, \
slot_num, key2slot, cvm_offset_, gpu_sort_idx, gpu_sort_offset, \
gpu_sort_lens); \
} else { \
FeaturePushCopy<boxps::FeaturePushValueGpu<EmbedxDim, ExpandDim>>( \
stream, total_grad_values_gpu, grad_values, hidden_size, EmbedxDim, \
Expand All @@ -1505,6 +1522,13 @@ void BoxWrapper::CopyForPush(const paddle::platform::Place& place,
ExpandDim, total_length, batch_size, d_slot_vector, total_dims, \
slot_lens, slot_num, key2slot, cvm_offset_, gpu_sort_idx, \
gpu_sort_offset, gpu_sort_lens); \
} else if (feature_type_ == static_cast<int>(boxps::FEATURE_CONV)) { \
FeaturePushCopyVariable< \
boxps::FeaturePushValueGpuConv<EmbedxDim, ExpandDim>>( \
stream, total_grad_values_gpu, grad_values, hidden_size, EmbedxDim, \
ExpandDim, total_length, batch_size, d_slot_vector, total_dims, \
slot_lens, slot_num, key2slot, cvm_offset_, gpu_sort_idx, \
gpu_sort_offset, gpu_sort_lens); \
} else { \
FeaturePushCopyNNCross< \
boxps::FeaturePushValueGpu<EmbedxDim, ExpandDim>>( \
Expand Down
2 changes: 2 additions & 0 deletions paddle/fluid/framework/fleet/box_wrapper.h
Original file line number Diff line number Diff line change
Expand Up @@ -579,6 +579,8 @@ class BoxWrapper {
} else if (s_instance_->feature_type_ ==
static_cast<int>(boxps::FEATURE_PCOC)) {
s_instance_->cvm_offset_ = 8;
} else if (s_instance_->feature_type_ == static_cast<int>(boxps::FEATURE_CONV)) {
s_instance_->cvm_offset_ = 4;
} else {
s_instance_->cvm_offset_ = 3;
}
Expand Down
220 changes: 220 additions & 0 deletions paddle/fluid/operators/fused/fused_seqpool_cvm_with_conv_op.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,220 @@
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/fused/fused_seqpool_cvm_with_conv_op.h"
#include <string>
namespace paddle {
namespace operators {

class FusedSeqpoolCVMOpWithConv : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE_GE(ctx->Inputs("X").size(), 1UL, "Inputs(X) of FusedSeqpoolCVMOpWithConv should not be empty.");
PADDLE_ENFORCE_GE(ctx->Outputs("Out").size(), 1UL, "Outputs(Out) of FusedSeqpoolCVMOpWithConv should not be empty.");

auto cvm_dims = ctx->GetInputDim("CVM");
PADDLE_ENFORCE_EQ(cvm_dims.size(), 2UL, platform::errors::InvalidArgument("Input(CVM)'s rank should be 2."));
PADDLE_ENFORCE_EQ(cvm_dims[1], 3UL,
platform::errors::InvalidArgument("The 2nd dimension of Input(CVM) should be 3."));

auto ins_dims = ctx->GetInputsDim("X");
const int cvm_offset = ctx->Attrs().Get<int>("cvm_offset");
const size_t num_inputs = ins_dims.size();
std::vector<framework::DDim> outs_dims;
outs_dims.resize(num_inputs);
bool use_cvm = ctx->Attrs().Get<bool>("use_cvm");
bool show_filter = ctx->Attrs().Get<bool>("show_filter");

PADDLE_ENFORCE_GT(num_inputs, 0UL,
platform::errors::InvalidArgument(
"Input tensors count should be greater than 0, "
"but received value is %d.",
num_inputs));

// The output height should be confirmed in Compute,
// since input lod is not accessible here.
PADDLE_ENFORCE_EQ(ins_dims[0].size(), 2,
platform::errors::InvalidArgument(
"The dims size of first input should be equal to 2, "
"but received value is %d.",
ins_dims[0].size()));

for (size_t i = 0; i < num_inputs; ++i) {
const auto dims = ins_dims[i];
int rank = dims.size();
if (use_cvm) {
PADDLE_ENFORCE_GT(
dims[rank - 1], 2,
"Shape error in %lu id, the last dimension(embedding) of the "
"'X' tensor must be larger than 2.",
i);
}
// input lod is not accessible here
std::vector<int64_t> out_dim;
if (use_cvm) {
if (show_filter) {
out_dim = {-1, dims[rank - 1] - 1};
} else {
out_dim = {-1, dims[rank - 1]};
}
} else {
out_dim = {-1, dims[rank - 1] - cvm_offset};
}
outs_dims[i] = framework::make_ddim(out_dim);
}
ctx->SetOutputsDim("Out", outs_dims);
}

protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(framework::proto::VarType::FP32,
ctx.device_context());
}
};

class FusedSeqpoolCVMOpWithConvMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X",
"(vector<LoDTensor>) The input tensors of"
" operator.")
.AsDuplicable();
AddInput("CVM",
"(Tensor), a 2-D Tensor with shape [N x 2], where N is the batch "
"size, 2 is show and click.");
AddOutput("Out",
"(vector<Tensor>) The output of Op does not contain LoD "
"information.")
.AsDuplicable();
AddAttr<std::string>("pooltype",
"(string, default 'SUM') the pooling pooltype of "
"SequencePoolOp, only support SUM now.")
.SetDefault("SUM")
.InEnum({"SUM"});
AddAttr<float>("pad_value",
"(float, default 0.0) The value to pad for empty sequence.")
.SetDefault(0.0);
AddAttr<bool>("use_cvm", "bool, use cvm or not").SetDefault(true);
AddAttr<int>("cvm_offset", "(int, default 3)").SetDefault(3);
AddAttr<bool>("show_filter", "(bool, default false)").SetDefault(false);

AddComment(R"DOC(
Fuse multiple pairs of Sequence Pool and CVM Operator.

)DOC");
}
};

class FusedSeqpoolCVMGradOpWithConv : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;

void InferShape(framework::InferShapeContext* ctx) const override {
auto og_dims = ctx->GetInputsDim(framework::GradVarName("Out"));
auto x_dims = ctx->GetInputsDim("X");
auto cvm_dims = ctx->GetInputDim("CVM");
const int cvm_offset = ctx->Attrs().Get<int>("cvm_offset");
bool use_cvm = ctx->Attrs().Get<bool>("use_cvm");
bool show_filter = ctx->Attrs().Get<bool>("show_filter");

PADDLE_ENFORCE_EQ(
cvm_dims.size(), 2,
platform::errors::InvalidArgument("Input(CVM)'s rank should be 2."));

for (size_t i = 0; i < og_dims.size(); i++) {
PADDLE_ENFORCE_EQ(
og_dims[i].size(), x_dims[i].size(),
platform::errors::InvalidArgument(
"The rank of output grad must equal to Input(X). But "
"received: input rank %u, input shape [%s].",
og_dims[i].size(), og_dims[i]));
if (use_cvm) {
auto o_dim = og_dims[i][og_dims[i].size() - 1];
if (show_filter) {
o_dim += 1;
}
PADDLE_ENFORCE_EQ(
o_dim, x_dims[i][og_dims[i].size() - 1],
platform::errors::InvalidArgument(
"The dimension mismatch between Input(OUT@GRAD) and "
"Input(X). Received Input(OUT@GRAD): input rank %u, "
"input shape [%s]; received Input(X): input rank %u, "
"input shape [%s].",
og_dims[i].size(), og_dims[i], x_dims[i].size(), x_dims[i]));
} else {
PADDLE_ENFORCE_EQ(
og_dims[i][og_dims[i].size() - 1],
x_dims[i][og_dims[i].size() - 1] - cvm_offset,
platform::errors::InvalidArgument(
"The dimension mismatch between Input(OUT@GRAD) and "
"Input(X). Received Input(OUT@GRAD): input rank %u, "
"input shape [%s]; received Input(X): input rank %u, "
"input shape [%s].",
og_dims[i].size(), og_dims[i], x_dims[i].size(), x_dims[i]));
}
}
for (size_t i = 0; i < x_dims.size(); ++i) {
ctx->ShareLoD("X", framework::GradVarName("X"), i, i);
ctx->ShareDim("X", framework::GradVarName("X"), i, i);
}
}

protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
ctx, framework::GradVarName("Out")),
ctx.device_context());
}
};

template <typename T>
class FusedSeqpoolCVMGradOpWithConvMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

protected:
void Apply(GradOpPtr<T> op_desc_ptr) const override {
op_desc_ptr->SetType("fused_seqpool_cvm_with_conv_grad");
op_desc_ptr->SetInput("X", this->Input("X"));
op_desc_ptr->SetInput("CVM", this->Input("CVM"));

op_desc_ptr->SetInput(framework::GradVarName("Out"),
this->OutputGrad("Out"));
op_desc_ptr->SetOutput(framework::GradVarName("X"),
this->InputGrad("X", false));
op_desc_ptr->SetOutput(framework::GradVarName("CVM"),
this->InputGrad("CVM"));
op_desc_ptr->SetAttrMap(this->Attrs());
}
};

} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;

REGISTER_OPERATOR(fused_seqpool_cvm_with_conv, ops::FusedSeqpoolCVMOpWithConv,
ops::FusedSeqpoolCVMOpWithConvMaker,
ops::FusedSeqpoolCVMGradOpWithConvMaker<paddle::framework::OpDesc>,
ops::FusedSeqpoolCVMGradOpWithConvMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(fused_seqpool_cvm_with_conv_grad, ops::FusedSeqpoolCVMGradOpWithConv)

REGISTER_OP_CPU_KERNEL(fused_seqpool_cvm_with_conv,
ops::FusedSeqpoolCVMOpWithConvCPUKernel<float>)
REGISTER_OP_CPU_KERNEL(fused_seqpool_cvm_with_conv_grad,
ops::FusedSeqpoolCVMGradOpWithConvCPUKernel<float>)
Loading