-
-
Notifications
You must be signed in to change notification settings - Fork 133
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
a2a2cc8
commit 37d17ec
Showing
6 changed files
with
197 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -2,7 +2,7 @@ Package: lidR | |
Type: Package | ||
Title: Airborne LiDAR Data Manipulation and Visualization for Forestry | ||
Applications | ||
Version: 4.1.3 | ||
Version: 4.2.0 | ||
Authors@R: c( | ||
person("Jean-Romain", "Roussel", email = "[email protected]", role = c("aut", "cre", "cph")), | ||
person("David", "Auty", email = "", role = c("aut", "ctb"), comment = "Reviews the documentation"), | ||
|
@@ -110,6 +110,7 @@ Collate: | |
'engine_write.R' | ||
'fasterize.R' | ||
'filters.R' | ||
'fit_shapes.R' | ||
'fullwaveform.R' | ||
'generate_las.R' | ||
'io_readLAS.R' | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,135 @@ | ||
fit_circle_on_3_points <- function(points_subset) | ||
{ | ||
stopifnot(nrow(points_subset) == 3L, ncol(points_subset) > 2L) | ||
|
||
# Extract the coordinates | ||
x1 <- points_subset[1, 1] | ||
y1 <- points_subset[1, 2] | ||
x2 <- points_subset[2, 1] | ||
y2 <- points_subset[2, 2] | ||
x3 <- points_subset[3, 1] | ||
y3 <- points_subset[3, 2] | ||
|
||
# Calculate the coefficients for the linear system | ||
A <- 2 * (x2 - x1) | ||
B <- 2 * (y2 - y1) | ||
C <- x2^2 + y2^2 - x1^2 - y1^2 | ||
D <- 2 * (x3 - x1) | ||
E <- 2 * (y3 - y1) | ||
G <- x3^2 + y3^2 - x1^2 - y1^2 | ||
|
||
# Solve for a and b using Cramer's rule | ||
denominator <- A * E - B * D | ||
if (denominator == 0) | ||
{ | ||
return(c(0, 0, 0)) | ||
} | ||
a <- (C * E - B * G) / denominator | ||
b <- (A * G - C * D) / denominator | ||
|
||
# Calculate the radius | ||
r <- sqrt((x1 - a)^2 + (y1 - b)^2) | ||
|
||
# Return the center and radius | ||
return(c(a, b, r)) | ||
} | ||
|
||
#' Fits 2D Circles on a Point Cloud | ||
#' | ||
#' Fits a 2D horizontally-aligned circle to a set of 3D points. The method uses RANSAC-based fitting | ||
#' for robust estimation. The function returns a list with the circle parameters and additional data | ||
#' to help determine whether the points form a circular shape. While it is always possible to fit a | ||
#' circle to any dataset, the additional information assists in evaluating if the data genuinely | ||
#' represent a circular pattern. The root mean square error (RMSE) may not always be a reliable metric | ||
#' for assessing the quality of the fit due to non-circular elements (such as branches) that can arbitrarily | ||
#' increase the RMSE of an otherwise well-fitted circle, as shown in the example below. Therefore, the | ||
#' function also returns the angular range of the data, which indicates the spread of the inlier points: | ||
#' 360 degrees suggests a full circle, 180 degrees indicates a half-circle, or a smaller range may | ||
#' suggest a partial arc. | ||
#' | ||
#' @param points A LAS object representing a clustered slice, or an nx3 matrix of point coordinates. | ||
#' @param num_iteration The number of iterations for the RANSAC fitting algorithm. | ||
#' @param inlier_threshold A threshold value; points are considered inliers if their residuals are | ||
#' below this value. | ||
#' | ||
#' @return A list containing the circle parameters and additional information for determining whether | ||
#' the data fit a circular shape: | ||
#' - `center_x`, `center_y`, `radius`: parameters of the fitted circle. | ||
#' - `z`: average elevation of the circle. | ||
#' - `rmse`: root mean square error between the circle and all points. | ||
#' - `angle_range`: angular sector covered by inlier points. | ||
#' - `inliers`: IDs of the inlier points. | ||
#' @md | ||
#' @export | ||
#' @examples | ||
#' LASfile <- system.file("extdata", "dbh.laz", package="lidR") | ||
#' las <- readTLS(LASfile, select = "xyz") | ||
#' xyz = sf::st_coordinates(las) | ||
#' circle = fit_circle(xyz) | ||
#' plot(xyz, asp = 1, pch = 19, cex = 0.1) | ||
#' symbols(circle$center_x, circle$center_y, circles = circle$radius, | ||
#' add = TRUE, fg = "red", inches = FALSE) | ||
#' | ||
#' trunk = las[circle$inliers] | ||
#' | ||
#' # Fitting a half-circle | ||
#' half = xyz[xyz[,1] > 101.45,] | ||
#' circle = fit_circle(half) | ||
#' plot(half, asp = 1, pch = 19, cex = 0.1) | ||
#' symbols(circle$center_x, circle$center_y, circles = circle$radius, | ||
#' add = TRUE, fg = "red", inches = FALSE) | ||
#' circle$angle_range | ||
fit_circle <- function(points, num_iterations = 500, inlier_threshold = 0.01) | ||
{ | ||
best_circle <- NULL | ||
max_inliers <- 0 | ||
|
||
if (is(points, "LAS")) points = st_coordinates(points) | ||
|
||
stopifnot(is.matrix(points), ncol(points) == 3L, nrow(points) > 3L) | ||
|
||
z = points[, 3] | ||
|
||
for (i in 1:num_iterations) | ||
{ | ||
# Randomly sample points | ||
sample_indices <- sample(1:nrow(points), 3L) | ||
points_subset <- points[sample_indices, ] | ||
|
||
params <- fit_circle_on_3_points(points_subset) | ||
|
||
# Compute residuals for all points | ||
distances <- sqrt((points[, 1] - params[1])^2 + (points[, 2] - params[2])^2) | ||
residuals <- abs(distances - params[3]) | ||
|
||
# Count inliers (points whose residuals are below the threshold) | ||
inliers <- sum(residuals < inlier_threshold) | ||
|
||
# Update best model if more inliers are found | ||
if (inliers > max_inliers) | ||
{ | ||
max_inliers <- inliers | ||
best_circle <- params | ||
} | ||
} | ||
|
||
center_x <- best_circle[1] | ||
center_y <- best_circle[2] | ||
radius <- best_circle[3] | ||
|
||
# Goodness of fit | ||
distances <- sqrt((points[, 1] - center_x)^2 + (points[, 2] - center_y)^2) | ||
residuals <- abs(distances - radius) | ||
inliers <- residuals < inlier_threshold | ||
rmse <- sqrt(mean((residuals)^2)) | ||
|
||
# Angular range | ||
angle_res = 3 | ||
angles <- atan2(points[inliers, 2] - center_y, points[inliers, 1] - center_x) | ||
angles <- ifelse(angles < 0, angles + 2 * pi, angles) | ||
angles <- sort(angles*180/pi) | ||
rangles <- unique(round(angles/angle_res)*angle_res) | ||
angle_range_degrees = sum(diff(rangles) <= angle_res)*angle_res | ||
|
||
return(list(center_x = center_x, center_y = center_y, radius = radius, z = mean(z), rmse = rmse, angle_range = angle_range_degrees, inliers = which(inliers))) | ||
} |
Binary file not shown.
Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.
Oops, something went wrong.