Skip to content

Generate a transcript for your favourite Manga: Detect manga characters, text blocks and panels. Order panels. Cluster characters. Match texts to their speakers. Perform OCR.

Notifications You must be signed in to change notification settings

ragavsachdeva/magi

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

21 Commits
 
 

Repository files navigation

Magi, The Manga Whisperer

Static Badge Static Badge Dynamic JSON Badge Static Badge

Static Badge Static Badge Dynamic JSON Badge Static Badge

TODOs:

  • Upload Magiv2 model,
  • open-source PopManga-X,
  • open-source PopCharacters dataset (ETA: end of Sep, or early Oct),
  • release evaluation scripts.

Magiv1

Magi_teaser

v1 Usage

from transformers import AutoModel
import numpy as np
from PIL import Image
import torch
import os

images = [
        "path_to_image1.jpg",
        "path_to_image2.png",
    ]

def read_image_as_np_array(image_path):
    with open(image_path, "rb") as file:
        image = Image.open(file).convert("L").convert("RGB")
        image = np.array(image)
    return image

images = [read_image_as_np_array(image) for image in images]

model = AutoModel.from_pretrained("ragavsachdeva/magi", trust_remote_code=True).cuda()
with torch.no_grad():
    results = model.predict_detections_and_associations(images)
    text_bboxes_for_all_images = [x["texts"] for x in results]
    ocr_results = model.predict_ocr(images, text_bboxes_for_all_images)

for i in range(len(images)):
    model.visualise_single_image_prediction(images[i], results[i], filename=f"image_{i}.png")
    model.generate_transcript_for_single_image(results[i], ocr_results[i], filename=f"transcript_{i}.txt")

Magiv2

magiv2

v2 Usage

from PIL import Image
import numpy as np
from transformers import AutoModel
import torch

model = AutoModel.from_pretrained("ragavsachdeva/magiv2", trust_remote_code=True).cuda().eval()


def read_image(path_to_image):
    with open(path_to_image, "rb") as file:
        image = Image.open(file).convert("L").convert("RGB")
        image = np.array(image)
    return image

chapter_pages = ["page1.png", "page2.png", "page3.png" ...]
character_bank = {
    "images": ["char1.png", "char2.png", "char3.png", "char4.png" ...],
    "names": ["Luffy", "Sanji", "Zoro", "Ussop" ...]
}

chapter_pages = [read_image(x) for x in chapter_pages]
character_bank["images"] = [read_image(x) for x in character_bank["images"]]

with torch.no_grad():
    per_page_results = model.do_chapter_wide_prediction(chapter_pages, character_bank, use_tqdm=True, do_ocr=True)

transcript = []
for i, (image, page_result) in enumerate(zip(chapter_pages, per_page_results)):
    model.visualise_single_image_prediction(image, page_result, f"page_{i}.png")
    speaker_name = {
        text_idx: page_result["character_names"][char_idx] for text_idx, char_idx in page_result["text_character_associations"]
    }
    for j in range(len(page_result["ocr"])):
        if not page_result["is_essential_text"][j]:
            continue
        name = speaker_name.get(j, "unsure") 
        transcript.append(f"<{name}>: {page_result['ocr'][j]}")
with open(f"transcript.txt", "w") as fh:
    for line in transcript:
        fh.write(line + "\n")

Datasets

Disclaimer: In adherence to copyright regulations, we are unable to publicly distribute the manga images that we've collected. The test images, however, are available freely, publicly and officially on Manga Plus by Shueisha.

Static Badge

Other notes

  • Request to download Manga109 dataset here.
  • Download a large scale dataset from Mangadex using this tool.
  • The Manga109 test splits are available here: detection, character clustering. Be careful that some background characters have the same label even though they are not the same character, see.

License and Citation

The provided models and datasets are available for academic research purposes only.

@InProceedings{magiv1,
    author    = {Sachdeva, Ragav and Zisserman, Andrew},
    title     = {The Manga Whisperer: Automatically Generating Transcriptions for Comics},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2024},
    pages     = {12967-12976}
}
@misc{magiv2,
      author={Ragav Sachdeva and Gyungin Shin and Andrew Zisserman},
      title={Tails Tell Tales: Chapter-Wide Manga Transcriptions with Character Names}, 
      year={2024},
      eprint={2408.00298},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2408.00298}, 
}

About

Generate a transcript for your favourite Manga: Detect manga characters, text blocks and panels. Order panels. Cluster characters. Match texts to their speakers. Perform OCR.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published