Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix penalty for LogisticRegression #403

Merged
merged 3 commits into from
Feb 21, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion .github/workflows/python_tests.yml
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@ jobs:
fail-fast: false
matrix:
platform: [ubuntu-latest, macos-latest, windows-latest]
python-version: ["3.8", "3.9", "3.10", "3.11"]
python-version: ["3.9", "3.10", "3.11"]

runs-on: ${{ matrix.platform }}

Expand Down
2 changes: 1 addition & 1 deletion pingouin/regression.py
Original file line number Diff line number Diff line change
Expand Up @@ -893,7 +893,7 @@ def logistic_regression(
# Updated in Pingouin > 0.3.6 to be consistent with R
kwargs["solver"] = "newton-cg"
if "penalty" not in kwargs:
kwargs["penalty"] = "none"
kwargs["penalty"] = None
lom = LogisticRegression(**kwargs)
lom.fit(X, y)

Expand Down
37 changes: 19 additions & 18 deletions pingouin/tests/test_regression.py
Original file line number Diff line number Diff line change
Expand Up @@ -261,29 +261,29 @@ def test_logistic_regression(self):
# Together in one cell below
# %%R -i df
# summary(glm(Ybin ~ X, data=df, family=binomial))
assert_equal(np.round(lom["coef"], 4), [1.3191, -0.1995])
assert_equal(np.round(lom["se"], 4), [0.7582, 0.1211])
assert_equal(np.round(lom["z"], 4), [1.7399, -1.6476])
assert_equal(np.round(lom["pval"], 4), [0.0819, 0.0994])
assert_equal(np.round(lom["CI[2.5%]"], 4), [-0.1669, -0.4367])
assert_equal(np.round(lom["CI[97.5%]"], 4), [2.8050, 0.0378])
assert_equal(np.round(lom["coef"], 3), [1.319, -0.199])
assert_equal(np.round(lom["se"], 3), [0.758, 0.121])
assert_equal(np.round(lom["z"], 3), [1.74, -1.647])
assert_equal(np.round(lom["pval"], 3), [0.082, 0.099])
assert_equal(np.round(lom["CI[2.5%]"], 3), [-0.167, -0.437])
assert_equal(np.round(lom["CI[97.5%]"], 3), [2.805, 0.038])

# Multiple predictors
X = df[["X", "M"]].to_numpy()
y = df["Ybin"].to_numpy()
lom = logistic_regression(X, y).round(4) # Pingouin
lom = logistic_regression(X, y).round(3) # Pingouin
# Compare against R
# summary(glm(Ybin ~ X+M, data=df, family=binomial))
assert_equal(lom["coef"].to_numpy(), [1.3275, -0.1960, -0.0060])
assert_equal(lom["se"].to_numpy(), [0.7784, 0.1408, 0.1253])
assert_equal(lom["z"].to_numpy(), [1.7055, -1.3926, -0.0475])
assert_equal(lom["pval"].to_numpy(), [0.0881, 0.1637, 0.9621])
assert_equal(lom["CI[2.5%]"].to_numpy(), [-0.1981, -0.4719, -0.2516])
assert_equal(lom["CI[97.5%]"].to_numpy(), [2.8531, 0.0799, 0.2397])
assert_equal(lom["coef"].to_numpy(), [1.327, -0.196, -0.006])
assert_equal(lom["se"].to_numpy(), [0.778, 0.141, 0.125])
assert_equal(lom["z"].to_numpy(), [1.705, -1.392, -0.048])
assert_equal(lom["pval"].to_numpy(), [0.088, 0.164, 0.962])
assert_equal(lom["CI[2.5%]"].to_numpy(), [-0.198, -0.472, -0.252])
assert_equal(lom["CI[97.5%]"].to_numpy(), [2.853, 0.08, 0.24])

# Test other arguments
c = logistic_regression(df[["X", "M"]], df["Ybin"], coef_only=True)
assert_equal(np.round(c, 4), [1.3275, -0.1960, -0.0060])
assert_equal(np.round(c, 3), [1.327, -0.196, -0.006])

# With missing values
logistic_regression(df_nan[["X", "M"]], df_nan["Ybin"], remove_na=True)
Expand Down Expand Up @@ -353,11 +353,12 @@ def test_logistic_regression(self):
X = data_dum[["body_mass_kg", "species_Chinstrap", "species_Gentoo"]]
y = data_dum["male"]
lom = logistic_regression(X, y, as_dataframe=False)
assert_equal(np.round(lom["coef"], 7), [-27.1318593, 7.3728436, -0.2559251, -10.1778083])
assert_equal(np.round(lom["se"], 4), [2.9984, 0.8141, 0.4293, 1.1946])
# See https://github.com/raphaelvallat/pingouin/pull/403
assert_equal(np.round(lom["coef"], 2), [-27.13, 7.37, -0.26, -10.18])
assert_equal(np.round(lom["se"], 3), [2.998, 0.814, 0.429, 1.195])
assert_equal(np.round(lom["z"], 3), [-9.049, 9.056, -0.596, -8.520])
assert_equal(np.round(lom["CI[2.5%]"], 3), [-33.009, 5.777, -1.097, -12.519])
assert_equal(np.round(lom["CI[97.5%]"], 3), [-21.255, 8.969, 0.586, -7.836])
assert_equal(np.round(lom["CI[2.5%]"], 1), [-33.0, 5.8, -1.1, -12.5])
assert_equal(np.round(lom["CI[97.5%]"], 1), [-21.3, 9.0, 0.6, -7.8])

def test_mediation_analysis(self):
"""Test function mediation_analysis."""
Expand Down
Loading