-
Notifications
You must be signed in to change notification settings - Fork 5.8k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
e58b784
commit 6443f3d
Showing
8 changed files
with
572 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Empty file.
266 changes: 266 additions & 0 deletions
266
python/ray/ml/examples/horovod/horovod_pytorch_example.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,266 @@ | ||
import argparse | ||
from filelock import FileLock | ||
import horovod.torch as hvd | ||
import os | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
import torch.optim as optim | ||
import torch.utils.data.distributed | ||
from torchvision import datasets, transforms | ||
|
||
import ray | ||
from ray import train | ||
from ray.ml.train.integrations.horovod import HorovodTrainer | ||
|
||
|
||
def metric_average(val, name): | ||
tensor = torch.tensor(val) | ||
avg_tensor = hvd.allreduce(tensor, name=name) | ||
return avg_tensor.item() | ||
|
||
|
||
class Net(nn.Module): | ||
def __init__(self): | ||
super(Net, self).__init__() | ||
self.conv1 = nn.Conv2d(1, 10, kernel_size=5) | ||
self.conv2 = nn.Conv2d(10, 20, kernel_size=5) | ||
self.conv2_drop = nn.Dropout2d() | ||
self.fc1 = nn.Linear(320, 50) | ||
self.fc2 = nn.Linear(50, 10) | ||
|
||
def forward(self, x): | ||
x = F.relu(F.max_pool2d(self.conv1(x), 2)) | ||
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) | ||
x = x.view(-1, 320) | ||
x = F.relu(self.fc1(x)) | ||
x = F.dropout(x, training=self.training) | ||
x = self.fc2(x) | ||
return F.log_softmax(x) | ||
|
||
|
||
def setup(config): | ||
data_dir = config.get("data_dir", None) | ||
seed = config.get("seed", 42) | ||
batch_size = config.get("batch_size", 64) | ||
use_adasum = config.get("use_adasum", False) | ||
lr = config.get("lr", 0.01) | ||
momentum = config.get("momentum", 0.5) | ||
use_cuda = config.get("use_cuda", False) | ||
|
||
# Horovod: initialize library. | ||
hvd.init() | ||
torch.manual_seed(seed) | ||
|
||
if use_cuda: | ||
# Horovod: pin GPU to local rank. | ||
torch.cuda.set_device(hvd.local_rank()) | ||
torch.cuda.manual_seed(seed) | ||
|
||
# Horovod: limit # of CPU threads to be used per worker. | ||
torch.set_num_threads(1) | ||
|
||
kwargs = {"num_workers": 1, "pin_memory": True} if use_cuda else {} | ||
data_dir = data_dir or "~/data" | ||
with FileLock(os.path.expanduser("~/.horovod_lock")): | ||
train_dataset = datasets.MNIST( | ||
data_dir, | ||
train=True, | ||
download=True, | ||
transform=transforms.Compose( | ||
[transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))] | ||
), | ||
) | ||
# Horovod: use DistributedSampler to partition the training data. | ||
train_sampler = torch.utils.data.distributed.DistributedSampler( | ||
train_dataset, num_replicas=hvd.size(), rank=hvd.rank() | ||
) | ||
train_loader = torch.utils.data.DataLoader( | ||
train_dataset, batch_size=batch_size, sampler=train_sampler, **kwargs | ||
) | ||
|
||
model = Net() | ||
|
||
# By default, Adasum doesn't need scaling up learning rate. | ||
lr_scaler = hvd.size() if not use_adasum else 1 | ||
|
||
if use_cuda: | ||
# Move model to GPU. | ||
model.cuda() | ||
# If using GPU Adasum allreduce, scale learning rate by local_size. | ||
if use_adasum and hvd.nccl_built(): | ||
lr_scaler = hvd.local_size() | ||
|
||
# Horovod: scale learning rate by lr_scaler. | ||
optimizer = optim.SGD(model.parameters(), lr=lr * lr_scaler, momentum=momentum) | ||
|
||
# Horovod: wrap optimizer with DistributedOptimizer. | ||
optimizer = hvd.DistributedOptimizer( | ||
optimizer, | ||
named_parameters=model.named_parameters(), | ||
op=hvd.Adasum if use_adasum else hvd.Average, | ||
) | ||
|
||
return model, optimizer, train_loader, train_sampler | ||
|
||
|
||
def train_epoch( | ||
model, optimizer, train_sampler, train_loader, epoch, log_interval, use_cuda | ||
): | ||
loss = None | ||
model.train() | ||
# Horovod: set epoch to sampler for shuffling. | ||
train_sampler.set_epoch(epoch) | ||
for batch_idx, (data, target) in enumerate(train_loader): | ||
if use_cuda: | ||
data, target = data.cuda(), target.cuda() | ||
optimizer.zero_grad() | ||
output = model(data) | ||
loss = F.nll_loss(output, target) | ||
loss.backward() | ||
optimizer.step() | ||
if batch_idx % log_interval == 0: | ||
# Horovod: use train_sampler to determine the number of | ||
# examples in this worker's partition. | ||
print( | ||
"Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format( | ||
epoch, | ||
batch_idx * len(data), | ||
len(train_sampler), | ||
100.0 * batch_idx / len(train_loader), | ||
loss.item(), | ||
) | ||
) | ||
return loss.item() if loss else None | ||
|
||
|
||
def train_func(config): | ||
num_epochs = config.get("num_epochs", 10) | ||
log_interval = config.get("log_interval", 10) | ||
use_cuda = config.get("use_cuda", False) | ||
save_model_as_dict = config.get("save_model_as_dict", False) | ||
|
||
model, optimizer, train_loader, train_sampler = setup(config) | ||
|
||
results = [] | ||
for epoch in range(num_epochs): | ||
loss = train_epoch( | ||
model, optimizer, train_sampler, train_loader, epoch, log_interval, use_cuda | ||
) | ||
results.append(loss) | ||
if save_model_as_dict: | ||
train.save_checkpoint(model=model.state_dict()) | ||
else: | ||
train.save_checkpoint(model=model) | ||
print("losses of each epoch:") | ||
print(results) | ||
return results | ||
|
||
|
||
def main(num_workers, use_gpu, kwargs): | ||
trainer = HorovodTrainer( | ||
train_loop_per_worker=train_func, | ||
train_loop_config={ | ||
"num_epochs": kwargs["num_epochs"], | ||
"log_interval": kwargs["log_interval"], | ||
"use_cuda": kwargs["use_cuda"], | ||
}, | ||
scaling_config={"num_workers": num_workers, "use_gpu": use_gpu}, | ||
) | ||
result = trainer.fit() | ||
print(result) | ||
|
||
|
||
if __name__ == "__main__": | ||
# Training settings | ||
parser = argparse.ArgumentParser( | ||
description="PyTorch MNIST Example", | ||
formatter_class=argparse.ArgumentDefaultsHelpFormatter, | ||
) | ||
parser.add_argument( | ||
"--batch-size", | ||
type=int, | ||
default=64, | ||
metavar="N", | ||
help="input batch size for training (default: 64)", | ||
) | ||
parser.add_argument( | ||
"--num-epochs", | ||
type=int, | ||
default=5, | ||
metavar="N", | ||
help="number of epochs to train (default: 10)", | ||
) | ||
parser.add_argument( | ||
"--lr", | ||
type=float, | ||
default=0.01, | ||
metavar="LR", | ||
help="learning rate (default: 0.01)", | ||
) | ||
parser.add_argument( | ||
"--momentum", | ||
type=float, | ||
default=0.5, | ||
metavar="M", | ||
help="SGD momentum (default: 0.5)", | ||
) | ||
parser.add_argument( | ||
"--use-gpu", action="store_true", default=False, help="enables CUDA training" | ||
) | ||
parser.add_argument( | ||
"--seed", type=int, default=42, metavar="S", help="random seed (default: 42)" | ||
) | ||
parser.add_argument( | ||
"--log-interval", | ||
type=int, | ||
default=10, | ||
metavar="N", | ||
help="how many batches to wait before logging training status", | ||
) | ||
parser.add_argument( | ||
"--use-adasum", | ||
action="store_true", | ||
default=False, | ||
help="use adasum algorithm to do reduction", | ||
) | ||
parser.add_argument( | ||
"--num-workers", | ||
type=int, | ||
default=2, | ||
help="Number of Ray workers to use for training.", | ||
) | ||
parser.add_argument( | ||
"--data-dir", | ||
help="location of the training dataset in the local filesystem (" | ||
"will be downloaded if needed)", | ||
) | ||
parser.add_argument( | ||
"--address", | ||
required=False, | ||
type=str, | ||
default=None, | ||
help="Address of Ray cluster.", | ||
) | ||
|
||
args = parser.parse_args() | ||
|
||
if args.address: | ||
ray.init(args.address) | ||
else: | ||
ray.init() | ||
|
||
use_cuda = args.use_gpu if args.use_gpu is not None else False | ||
|
||
kwargs = { | ||
"data_dir": args.data_dir, | ||
"seed": args.seed, | ||
"use_cuda": use_cuda, | ||
"batch_size": args.batch_size, | ||
"use_adasum": args.use_adasum if args.use_adasum else False, | ||
"lr": args.lr, | ||
"momentum": args.momentum, | ||
"num_epochs": args.num_epochs, | ||
"log_interval": args.log_interval, | ||
} | ||
|
||
main(num_workers=args.num_workers, use_gpu=use_cuda, kwargs=kwargs) |
Oops, something went wrong.