Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fixed replace bug and Libc missing #232

Merged
merged 1 commit into from
Feb 9, 2024

Conversation

floswald
Copy link
Contributor

@floswald floswald commented Feb 8, 2024

fixes issue #231

btw, the SaveParameters keyword does not produce any json as promised though, correct? that would be an interesting addition I think. thanks

julia> res = bboptimize(rosenbrock2d; SearchRange = (-5.0, 5.0), NumDimensions = 2, SaveFitnessTraceToCsv = true, SaveParameters = true, TraceMode = :verbose)
Starting optimization with optimizer DiffEvoOpt{FitPopulation{Float64}, RadiusLimitedSelector, BlackBoxOptim.AdaptiveDiffEvoRandBin{3}, RandomBound{ContinuousRectSearchSpace}}
0.00 secs, 0 evals, 0 steps
DE modify state:

Optimization stopped after 10001 steps and 0.01 seconds
Termination reason: Max number of steps (10000) reached
Steps per second = 1043178.09
Function evals per second = 1055486.36
Improvements/step = 0.20360
Total function evaluations = 10119


Best candidate found: [1.0, 1.0]

Fitness: 0.000000000

BlackBoxOptim.OptimizationResults("adaptive_de_rand_1_bin_radiuslimited", "Max number of steps (10000) reached", 10001, 1.707386782454165e9, 0.00958704948425293, ParamsDictChain[ParamsDictChain[Dict{Symbol, Any}(:NumDimensions => 2, :SearchRange => (-5.0, 5.0), :TraceMode => :verbose, :SaveParameters => true, :MaxSteps => 10000, :SaveFitnessTraceToCsv => true),Dict{Symbol, Any}()],Dict{Symbol, Any}(:CallbackInterval => -1.0, :TargetFitness => nothing, :TraceMode => :compact, :FitnessScheme => ScalarFitnessScheme{true}(), :MinDeltaFitnessTolerance => 1.0e-50, :NumDimensions => :NotSpecified, :FitnessTolerance => 1.0e-8, :TraceInterval => 0.5, :MaxStepsWithoutProgress => 10000, :MaxSteps => 10000…)], 10119, ScalarFitnessScheme{true}(), BlackBoxOptim.TopListArchiveOutput{Float64, Vector{Float64}}(1.7176926549066218e-24, [0.9999999999989588, 0.9999999999978381]), BlackBoxOptim.PopulationOptimizerOutput{FitPopulation{Float64}}(FitPopulation{Float64}([0.9999999999996163 0.9999999999962903 … 1.0000000000013298 0.999999999999466; 1.0000000000006652 0.9999999999930776 … 1.0000000000022256 0.9999999999986234], NaN, [2.0539060522917263e-22, 3.846742518500019e-23, 1.7176926549066218e-24, 2.4738612043889634e-22, 3.9681223422294817e-22, 3.5820915830394916e-23, 2.666102576528396e-22, 1.3094800256976474e-21, 1.5389578338552158e-21, 1.9802541673238255e-21  …  7.330448312375647e-22, 7.325100402925062e-22, 1.8203707750460086e-22, 6.411740490468472e-23, 3.820435513049151e-22, 8.65217237642243e-23, 9.746666863704813e-23, 1.422393978514559e-22, 2.061247303302316e-23, 9.804310921923098e-24], 0, BlackBoxOptim.Candidate{Float64}[BlackBoxOptim.Candidate{Float64}([0.9999999999938156, 0.9999999999881966], 15, 7.020593370442687e-23, BlackBoxOptim.AdaptiveDiffEvoRandBin{3}(BlackBoxOptim.AdaptiveDiffEvoParameters(BlackBoxOptim.BimodalCauchy(Distributions.Cauchy{Float64}(μ=0.65, σ=0.1), Distributions.Cauchy{Float64}(μ=1.0, σ=0.1), 0.5, false, true), BlackBoxOptim.BimodalCauchy(Distributions.Cauchy{Float64}(μ=0.1, σ=0.1), Distributions.Cauchy{Float64}(μ=0.95, σ=0.1), 0.5, false, true), [0.35100190625313, 0.7420146956694189, 1.0, 0.7329383977444415, 0.8847658486704195, 1.0, 0.7971842920131007, 0.921147423522936, 0.46202382006054465, 0.649190225631729  …  0.9592004051583127, 1.0, 0.6510597370903847, 0.9638788070342085, 1.0, 0.4933651958880294, 0.6013476881483406, 0.9827869269162178, 0.3850498378624238, 0.2669304722915554], [1.0, 0.06847559159376043, 1.0, 1.0, 1.0, 0.010062102496415412, 0.8661130137438211, 1.0, 0.9388556473906894, 0.2684965797820653  …  1.0, 0.995686073689982, 0.07090640909672812, 0.2045750392503057, 0.6211077086645644, 0.9567948256531256, 0.8736836101032183, 1.0, 1.0, 0.9805305418175313])), 0), BlackBoxOptim.Candidate{Float64}([1.000000000012749, 1.0000000000199356], 15, 3.2563609722243674e-21, BlackBoxOptim.AdaptiveDiffEvoRandBin{3}(BlackBoxOptim.AdaptiveDiffEvoParameters(BlackBoxOptim.BimodalCauchy(Distributions.Cauchy{Float64}(μ=0.65, σ=0.1), Distributions.Cauchy{Float64}(μ=1.0, σ=0.1), 0.5, false, true), BlackBoxOptim.BimodalCauchy(Distributions.Cauchy{Float64}(μ=0.1, σ=0.1), Distributions.Cauchy{Float64}(μ=0.95, σ=0.1), 0.5, false, true), [0.35100190625313, 0.7420146956694189, 1.0, 0.7329383977444415, 0.8847658486704195, 1.0, 0.7971842920131007, 0.921147423522936, 0.46202382006054465, 0.649190225631729  …  0.9592004051583127, 1.0, 0.6510597370903847, 0.9638788070342085, 1.0, 0.4933651958880294, 0.6013476881483406, 0.9827869269162178, 0.3850498378624238, 0.2669304722915554], [1.0, 0.06847559159376043, 1.0, 1.0, 1.0, 0.010062102496415412, 0.8661130137438211, 1.0, 0.9388556473906894, 0.2684965797820653  …  1.0, 0.995686073689982, 0.07090640909672812, 0.2045750392503057, 0.6211077086645644, 0.9567948256531256, 0.8736836101032183, 1.0, 1.0, 0.9805305418175313])), 0)], Base.Threads.SpinLock(0))))

julia> 

Copy link
Owner

@robertfeldt robertfeldt left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks, this looks good.

@robertfeldt robertfeldt merged commit e041f07 into robertfeldt:master Feb 9, 2024
14 of 15 checks passed
@robertfeldt
Copy link
Owner

Will have to look into SaveParams separately.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants