Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add inference_ids to model blocks #615

Merged
merged 3 commits into from
Aug 29, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,7 @@
convert_inference_detections_batch_to_sv_detections,
filter_out_unwanted_classes_from_sv_detections_batch,
)
from inference.core.workflows.execution_engine.constants import INFERENCE_ID_KEY
from inference.core.workflows.execution_engine.entities.base import (
Batch,
OutputDefinition,
Expand Down Expand Up @@ -164,6 +165,7 @@ def accepts_batch_input(cls) -> bool:
@classmethod
def describe_outputs(cls) -> List[OutputDefinition]:
return [
OutputDefinition(name=INFERENCE_ID_KEY, kind=[STRING_KIND]),
OutputDefinition(
name="predictions",
kind=[BATCH_OF_INSTANCE_SEGMENTATION_PREDICTION_KIND],
Expand Down Expand Up @@ -356,6 +358,7 @@ def _post_process_result(
predictions: List[dict],
class_filter: Optional[List[str]],
) -> BlockResult:
inference_id = predictions[0].get(INFERENCE_ID_KEY, None)
predictions = convert_inference_detections_batch_to_sv_detections(predictions)
predictions = attach_prediction_type_info_to_sv_detections_batch(
predictions=predictions,
Expand All @@ -369,4 +372,7 @@ def _post_process_result(
images=images,
predictions=predictions,
)
return [{"predictions": prediction} for prediction in predictions]
return [
{"inference_id": inference_id, "predictions": prediction}
for prediction in predictions
]
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,7 @@
convert_inference_detections_batch_to_sv_detections,
filter_out_unwanted_classes_from_sv_detections_batch,
)
from inference.core.workflows.execution_engine.constants import INFERENCE_ID_KEY
from inference.core.workflows.execution_engine.entities.base import (
Batch,
OutputDefinition,
Expand All @@ -34,6 +35,7 @@
LIST_OF_VALUES_KIND,
ROBOFLOW_MODEL_ID_KIND,
ROBOFLOW_PROJECT_KIND,
STRING_KIND,
FloatZeroToOne,
ImageInputField,
RoboflowModelField,
Expand Down Expand Up @@ -156,6 +158,7 @@ def accepts_batch_input(cls) -> bool:
@classmethod
def describe_outputs(cls) -> List[OutputDefinition]:
return [
OutputDefinition(name=INFERENCE_ID_KEY, kind=[STRING_KIND]),
OutputDefinition(
name="predictions", kind=[BATCH_OF_KEYPOINT_DETECTION_PREDICTION_KIND]
),
Expand Down Expand Up @@ -340,6 +343,7 @@ def _post_process_result(
predictions: List[dict],
class_filter: Optional[List[str]],
) -> BlockResult:
inference_id = predictions[0].get(INFERENCE_ID_KEY, None)
detections = convert_inference_detections_batch_to_sv_detections(predictions)
for prediction, image_detections in zip(predictions, detections):
add_inference_keypoints_to_sv_detections(
Expand All @@ -358,4 +362,7 @@ def _post_process_result(
images=images,
predictions=detections,
)
return [{"predictions": image_detections} for image_detections in detections]
return [
{"inference_id": inference_id, "predictions": image_detections}
for image_detections in detections
]
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@
from inference.core.workflows.core_steps.common.entities import StepExecutionMode
from inference.core.workflows.core_steps.common.utils import attach_prediction_type_info
from inference.core.workflows.execution_engine.constants import (
INFERENCE_ID_KEY,
PARENT_ID_KEY,
ROOT_PARENT_ID_KEY,
)
Expand All @@ -28,6 +29,7 @@
FLOAT_ZERO_TO_ONE_KIND,
ROBOFLOW_MODEL_ID_KIND,
ROBOFLOW_PROJECT_KIND,
STRING_KIND,
FloatZeroToOne,
ImageInputField,
RoboflowModelField,
Expand Down Expand Up @@ -106,6 +108,7 @@ def accepts_batch_input(cls) -> bool:
@classmethod
def describe_outputs(cls) -> List[OutputDefinition]:
return [
OutputDefinition(name=INFERENCE_ID_KEY, kind=[STRING_KIND]),
OutputDefinition(
name="predictions", kind=[BATCH_OF_CLASSIFICATION_PREDICTION_KIND]
),
Expand Down Expand Up @@ -246,6 +249,7 @@ def _post_process_result(
images: Batch[WorkflowImageData],
predictions: List[dict],
) -> BlockResult:
inference_id = predictions[0].get(INFERENCE_ID_KEY, None)
predictions = attach_prediction_type_info(
predictions=predictions,
prediction_type="classification",
Expand All @@ -255,4 +259,7 @@ def _post_process_result(
prediction[ROOT_PARENT_ID_KEY] = (
image.workflow_root_ancestor_metadata.parent_id
)
return [{"predictions": prediction} for prediction in predictions]
return [
{"inference_id": inference_id, "predictions": prediction}
for prediction in predictions
]
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@
from inference.core.workflows.core_steps.common.entities import StepExecutionMode
from inference.core.workflows.core_steps.common.utils import attach_prediction_type_info
from inference.core.workflows.execution_engine.constants import (
INFERENCE_ID_KEY,
PARENT_ID_KEY,
ROOT_PARENT_ID_KEY,
)
Expand All @@ -28,6 +29,7 @@
FLOAT_ZERO_TO_ONE_KIND,
ROBOFLOW_MODEL_ID_KIND,
ROBOFLOW_PROJECT_KIND,
STRING_KIND,
FloatZeroToOne,
ImageInputField,
RoboflowModelField,
Expand Down Expand Up @@ -106,9 +108,10 @@ def accepts_batch_input(cls) -> bool:
@classmethod
def describe_outputs(cls) -> List[OutputDefinition]:
return [
OutputDefinition(name=INFERENCE_ID_KEY, kind=[STRING_KIND]),
OutputDefinition(
name="predictions", kind=[BATCH_OF_CLASSIFICATION_PREDICTION_KIND]
)
),
]

@classmethod
Expand Down Expand Up @@ -243,6 +246,7 @@ def _post_process_result(
images: Batch[WorkflowImageData],
predictions: List[dict],
) -> List[dict]:
inference_id = predictions[0].get(INFERENCE_ID_KEY, None)
predictions = attach_prediction_type_info(
predictions=predictions,
prediction_type="classification",
Expand All @@ -252,4 +256,7 @@ def _post_process_result(
prediction[ROOT_PARENT_ID_KEY] = (
image.workflow_root_ancestor_metadata.parent_id
)
return [{"predictions": image_detections} for image_detections in predictions]
return [
{"inference_id": inference_id, "predictions": prediction}
for prediction in predictions
]
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@
convert_inference_detections_batch_to_sv_detections,
filter_out_unwanted_classes_from_sv_detections_batch,
)
from inference.core.workflows.execution_engine.constants import INFERENCE_ID_KEY
from inference.core.workflows.execution_engine.entities.base import (
Batch,
OutputDefinition,
Expand All @@ -31,6 +32,7 @@
LIST_OF_VALUES_KIND,
ROBOFLOW_MODEL_ID_KIND,
ROBOFLOW_PROJECT_KIND,
STRING_KIND,
FloatZeroToOne,
ImageInputField,
RoboflowModelField,
Expand Down Expand Up @@ -145,6 +147,7 @@ def accepts_batch_input(cls) -> bool:
@classmethod
def describe_outputs(cls) -> List[OutputDefinition]:
return [
OutputDefinition(name="inference_id", kind=[STRING_KIND]),
OutputDefinition(
name="predictions", kind=[BATCH_OF_OBJECT_DETECTION_PREDICTION_KIND]
),
Expand Down Expand Up @@ -322,6 +325,7 @@ def _post_process_result(
predictions: List[dict],
class_filter: Optional[List[str]],
) -> BlockResult:
inference_id = predictions[0].get(INFERENCE_ID_KEY, None)
predictions = convert_inference_detections_batch_to_sv_detections(predictions)
predictions = attach_prediction_type_info_to_sv_detections_batch(
predictions=predictions,
Expand All @@ -335,4 +339,7 @@ def _post_process_result(
images=images,
predictions=predictions,
)
return [{"predictions": prediction} for prediction in predictions]
return [
{"inference_id": inference_id, "predictions": prediction}
for prediction in predictions
]
Original file line number Diff line number Diff line change
@@ -0,0 +1,189 @@
import numpy as np
import pytest

from inference.core.env import WORKFLOWS_MAX_CONCURRENT_STEPS
from inference.core.managers.base import ModelManager
from inference.core.workflows.core_steps.common.entities import StepExecutionMode
from inference.core.workflows.execution_engine.core import ExecutionEngine

DETECTION_PLUS_CLASSIFICATION_WORKFLOW = {
"version": "1.0",
"inputs": [{"type": "WorkflowImage", "name": "image"}],
"steps": [
{
"type": "ObjectDetectionModel",
"name": "general_detection",
"image": "$inputs.image",
"model_id": "yolov8n-640",
"class_filter": ["dog"],
},
{
"type": "Crop",
"name": "cropping",
"image": "$inputs.image",
"predictions": "$steps.general_detection.predictions",
},
{
"type": "ClassificationModel",
"name": "breds_classification",
"image": "$steps.cropping.crops",
"model_id": "dog-breed-xpaq6/1",
},
],
"outputs": [
{
"type": "JsonField",
"name": "predictions",
"selector": "$steps.breds_classification.predictions",
},
],
}

OBJECT_DETECTION_WORKFLOW = {
"version": "1.0",
"inputs": [{"type": "WorkflowImage", "name": "image"}],
"steps": [
{
"type": "ObjectDetectionModel",
"name": "general_detection",
"image": "$inputs.image",
"model_id": "yolov8n-640",
"class_filter": ["dog"],
},
],
"outputs": [
{
"type": "JsonField",
"name": "predictions",
"coordinates_system": "own",
"selector": "$steps.general_detection.predictions",
}
],
}

INSTANCE_SEGMENTATION_WORKFLOW = {
"version": "1.0",
"inputs": [{"type": "WorkflowImage", "name": "image"}],
"steps": [
{
"type": "InstanceSegmentationModel",
"name": "instance_segmentation",
"image": "$inputs.image",
"model_id": "yolov8n-640",
},
],
"outputs": [
{
"type": "JsonField",
"name": "predictions",
"selector": "$steps.instance_segmentation.*",
}
],
}


@pytest.mark.workflows
def test_detection_plus_classification_workflow_with_inference_id(
model_manager: ModelManager,
dogs_image: np.ndarray,
roboflow_api_key: str,
) -> None:
# given
workflow_init_parameters = {
"workflows_core.model_manager": model_manager,
"workflows_core.api_key": roboflow_api_key,
"workflows_core.step_execution_mode": StepExecutionMode.LOCAL,
}
execution_engine = ExecutionEngine.init(
workflow_definition=DETECTION_PLUS_CLASSIFICATION_WORKFLOW,
init_parameters=workflow_init_parameters,
max_concurrent_steps=WORKFLOWS_MAX_CONCURRENT_STEPS,
)

# when
result = execution_engine.run(
runtime_parameters={
"image": dogs_image,
}
)

# then
assert (
len(result[0]["predictions"]) == 2
), "Expected 2 dogs crops on input image, hence 2 nested classification results"

for prediction in result[0]["predictions"]:
assert "inference_id" in prediction, "Expected inference_id in each prediction"
assert prediction["inference_id"] is not None, "Expected non-null inference_id"

assert [result[0]["predictions"][0]["top"], result[0]["predictions"][1]["top"]] == [
"116.Parson_russell_terrier",
"131.Wirehaired_pointing_griffon",
], "Expected predictions to be as measured in reference run"


@pytest.mark.workflows
def test_object_detection_workflow_with_inference_id(
model_manager: ModelManager,
dogs_image: np.ndarray,
roboflow_api_key: str,
) -> None:
# given
workflow_init_parameters = {
"workflows_core.model_manager": model_manager,
"workflows_core.api_key": roboflow_api_key,
"workflows_core.step_execution_mode": StepExecutionMode.LOCAL,
}
execution_engine = ExecutionEngine.init(
workflow_definition=OBJECT_DETECTION_WORKFLOW,
init_parameters=workflow_init_parameters,
max_concurrent_steps=WORKFLOWS_MAX_CONCURRENT_STEPS,
)

# when
result = execution_engine.run(
runtime_parameters={
"image": dogs_image,
}
)

# then
assert len(result[0]["predictions"]) == 2, "Expected 2 predictions"
assert (
result[0]["predictions"][0]["inference_id"] is not None
), "Expected non-null inference_id"
assert (
result[0]["predictions"][1]["inference_id"] is not None
), "Expected non-null inference_id"


@pytest.mark.workflows
def test_instance_segmentation_workflow_with_inference_id(
model_manager: ModelManager,
dogs_image: np.ndarray,
roboflow_api_key: str,
) -> None:
# given
workflow_init_parameters = {
"workflows_core.model_manager": model_manager,
"workflows_core.api_key": roboflow_api_key,
"workflows_core.step_execution_mode": StepExecutionMode.LOCAL,
}
execution_engine = ExecutionEngine.init(
workflow_definition=INSTANCE_SEGMENTATION_WORKFLOW,
init_parameters=workflow_init_parameters,
max_concurrent_steps=WORKFLOWS_MAX_CONCURRENT_STEPS,
)

# when
result = execution_engine.run(
runtime_parameters={
"image": dogs_image,
}
)

# then
assert len(result[0]["predictions"]) == 2, "Expected 2 predictions"
assert (
result[0]["predictions"].get("inference_id") is not None
), "Expected non-null inference_id"
Loading