forked from huggingface/transformers
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request huggingface#6 from ROCmSoftwarePlatform/gpt2-tf2
Moving gpt2 finetuning script into transformers/script.
- Loading branch information
Showing
1 changed file
with
76 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,76 @@ | ||
import sys | ||
import numpy as np | ||
from transformers import GPT2TokenizerFast, TFGPT2LMHeadModel | ||
import tensorflow as tf | ||
from tensorflow.keras import metrics | ||
import jsonlines as jsonl | ||
|
||
BATCH_SIZE=1 | ||
|
||
def get_dataset(fil): | ||
data = [] | ||
with jsonl.open(fil) as reader: | ||
for line in reader: | ||
data.append(line['text']) | ||
return data | ||
|
||
if len(sys.argv) == 1: | ||
model_size = "Small" | ||
data_dir = '/dockerx/data/' | ||
num_epochs = 1 | ||
truncate = True | ||
else: | ||
model_size = sys.argv[1] | ||
data_dir = sys.argv[2] | ||
num_epochs = int(sys.argv[3]) | ||
if int(sys.argv[4]) == 1: | ||
truncate = True | ||
else: | ||
truncate = False | ||
|
||
if model_size == "Small": | ||
model_name = "gpt2" | ||
train_file = data_dir+'small-117M.train.jsonl' | ||
test_file = data_dir+'small-117M.test.jsonl' | ||
elif model_size == "Medium": | ||
model_name = "gpt2-medium" | ||
train_file = data_dir+'medium-345M.train.jsonl' | ||
test_file = data_dir+'medium-345M.test.jsonl' | ||
elif model_size == "Large": | ||
model_name = "gpt2-large" | ||
train_file = data_dir+'large-762M.train.jsonl' | ||
test_file = data_dir+'large-762M.test.jsonl' | ||
elif model_size == "XL": | ||
model_name = 'gpt2-xl' | ||
train_file = data_dir+'xl-1542M.train.jsonl' | ||
test_file = data_dir+'xl-1542M.test.jsonl' | ||
print("Finetuning model " + model_name) | ||
print("With dataset "+train_file) | ||
|
||
tokenizer = GPT2TokenizerFast.from_pretrained(model_name) | ||
tokenizer.pad_token = tokenizer.eos_token | ||
def tokenize(data, truncate=False): | ||
if truncate: | ||
data = tokenizer(data[:1000], return_tensors='tf', padding=True, truncation=True) | ||
else: | ||
data = tokenizer(data, return_tensors='tf', padding=True, truncation=True) | ||
return tf.data.Dataset.from_tensor_slices((dict(data), data['input_ids'])) | ||
|
||
print("========================= Loading dataset ========================") | ||
train_dataset = tokenize(get_dataset(train_file), truncate).shuffle(1000).batch(BATCH_SIZE) | ||
test_dataset = tokenize(get_dataset(test_file), truncate).batch(BATCH_SIZE) | ||
print("============================ Loading model from pretrained ===========================") | ||
model = TFGPT2LMHeadModel.from_pretrained(model_name) | ||
#Supresses the past_key_values from being expressed in the progress bar | ||
model.config.use_cache=False | ||
optimizer = tf.keras.optimizers.Adam(learning_rate=3e-5) | ||
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) | ||
metric = metrics.SparseCategoricalAccuracy(name='Accuracy') | ||
print("========================= Compiling Model ============================") | ||
model.compile(optimizer=optimizer, loss=[loss, *[None] * model.config.n_layer], metrics=[metric]) | ||
print("========================= Finetuning Model ==================================") | ||
model.fit(train_dataset, batch_size=64, epochs=num_epochs)#, testation_data=test_dataset) | ||
print("========================= Evaluating Model ==================================") | ||
info = model.evaluate(test_dataset, verbose=2) | ||
#print("========================= Saving Model ======================================") | ||
#model.save(model_name+'finetuned') |