Skip to content

rubbish-and-world/RSA-OAEP

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Usage :

$ pip install eel
$ python3 main.py

GUIpreview

Usagepreview


RSA-OAEP(Optimal Asymmetric Encryption Padding)

Theory

documentation

Notation

octet

An octet is the eight-bit representation of an integer with the leftmost bit being the most significant bit; this integer is the value of the octet

octet string

An octet string is an ordered sequence of octets, where the first octet is the leftmost.

octetstring = concatenate(octet1,octet2,...,octetn) 

$$ X || Y = \text{concatenation of octet strings X and Y} $$

$$ X \oplus Y = \text{bitwise exclusive-or of octet strings X and Y} $$

Data conversion primitives

  • Throughout this document, messages are octet strings
  • RSA primitives act on integers

How to convert an octet string into a nonnegative integer and vice versa

Use elements of Octet String as coefficients with base 256

# Integer to Octet-String Primitive
def I2OSP(x : int ,l : int) -> bytearray :
    '''
    x : nonnegative integer to be converted
    l : intended length of the resulting octet string
    Output: X corresponding octet string of length l
    Errors: "integer too large"
    '''
    if x > 256 ** l :
        raise Exception("Integer too large")
    res = bytearray()
    while x:
        res.append(x % 256)
        x //= 256
    res + bytearray([0 for i in range(l - len(res))]) # pad with 0
    return res[::-1]
    
# Octet String to Integer Primitive
def OS2IP(X : bytearray) -> int :
    '''
    X : octet string to be converted
    Output: x corresponding nonnegative integer
    '''
    X = X[::-1]
    res = 0
    for i in range(len(X)):
        res += X[i] * 256**i
    return res

The RSA algorithm

RSA encryption and decryption

# RSA Encryption Primitive
def RSAEP((n,e) : tuple(int, int) , m : int ) -> int :
    return pow(m,e,n)

# RSA Decryption Primitive
def RSADP((n,d) : tuple(int, int) , c : int) -> int :
    return pow(c,d,n)

The EME-OAEP encoding method

maps a message M to an encoded message EM of a specified length using some ‘‘encoding parameters’’ (an octet string P), a hash function, and a mask generation function.

The decoding operation EME-OAEP-Decode maps an encoded message EM back to a message; the encoding and decoding operations are inverses.

Procedure

The encoding process is actually simple

  1. Use the random seed to generate a mask and then mask the DataBlock
  2. Use masked DataBlock to generate another mask and the mask the seed
  3. Concatenate the maskedSeed and maskedDB
# EME-OAEP-Encode
from random import randbytes
def _xor_bytes(a : bytearray ,b : bytearray ) -> bytearray :
    if len(a) != len(b):
        raise Exception("xor length discord")
    return bytearray([_a ^ _b for _a,_b in zip(a,b)])
def EME_OAEP_Encode(M : bytearray, P : bytearray, emLen : int)->bytearray :
	'''
	Options (Tow functions): 
	Hash function 
	(hLen denotes the length in octets of the hash function output)
	(16 for MD4 , 20 for SHA1)
	
	MGF mask generation function
	
	Input (Three Inputs): 
	M message to be encoded, an octet string of length at most `emLen − 1 − 2hLen`
	P encoding parameters, an octet string
	emLen intended length in octets of the encoded message, at least 2hLen + 1
	
	Output (One Output): 
	EM encoded message, an octet string of length emLen
	'''
    mLen = len(M)
    PLen = len(P)
    hLen = 20 # 16 for MD4
    # 1.
    # For MD4 PLen do not have limitation
    if PLen > 2**61 - 1 :
        raise Exception("parameter string too long")
    
    # 2.
    if mLen > emLen2hLen1 :
        raise Exception("message too long")
        
    # 3. Generate an octet string PS consisting of emLen − mLen − 2hLen − 1 zero octets. The length of PS may be 0
    # PS is just padding zeros
    PS = bytearray([0 for i in range(emLen - mLen - 2*hLen - 1)])
    
    # 4. calculate hash of P
    pHash = Hash(P)
    
    # 5. concatenate data to generate DataBlock DB
    DB = pHash + PS + b'\x01' + M
    
    # 6. generate random seed
    seed = randbytes(hLen)
    
    # 7. generate dbMask
    dbMask = MGF(seed , emLen - hLen)
    
    # 8. db xor dbMask
    maskedDB = _xor_bytes(DB , dbMask)
    
    # 9. generate seedMask 
    seedMask = MGF (maskedDB, hLen)
    
    # 10. seed xor seedMask
    maskedSeed = _xor_bytes(seed, seedMask)
    
    # 11. generate EM
    EM = maskedSeed + maskedDB

    return EM

Specification in this lab

  • No Parameter P, only message M
  • Mask generator function MGF is MD4

OAEP decoding operation

This is just the inverse of encoding operation

def EME_OAEP_Decode(EM : bytearray , P : bytearray) -> bytearray :
    '''
    Options (Two functions):
    	Hash function and MG Function
    
    Input:
    	EM, encoded message
    	P , parameter
    	
    Output:
    	M , the recovered message
    '''
    hLen = 20 # 16 for MD4
    
    # 1. validate parameter
    # For MD4 PLen do not have limitation
    if len(P) > 2**61 - 1 :
        raise Exception("decoding error")
        
    # 2. validate EM
    if len(EM) < 2*hLen + 1:
        raise Exception("decoding error")
        
    # 3. extract maskedSeed and maskedDB
    maskedSeed , maskedDB = EM[:hLen] , EM[hLen:]
    
    # 4,5. unmask seed
    seed = _xor_bytes(maskedSeed , MGF(maskedDB , hLen))
    
    # 6,7. unmask DB
    DB = _xor_bytes(maskedDB , MGF(seed , emLen - hLen))
    
    # 8. validate Hash(P)
    pHash = Hash(P)
    pH ,  flag_M = DB[:hLen] ,DB[hLen:].lstrip(b'\x00')
    flag = flag_M[0]
    if flag != b'\x01':
        raise Exception("decoding error")
    M = flag_M[1:]
    if pHash != PH :
        raise Exception("decoding error")
	return M

Mask generation function

  • Mask generation functions are deterministic; the octet string output is completely determined by the input octet string
  • The output of a mask generation function should be pseudorandom, that is, it should be infeasible to predict, given one part of the output but not the input, another part of the output
  • security of RSAES-OAEP relies on the random nature of the output of the mask generation function, which in turn relies on the random nature of the underlying hash function.
from math import ceil
def MGF(Z : bytearray ,  l : int) -> bytearray :
    '''
    Options: 
    	Hash hash function (hLen denotes the length in octets of the hash function output) 
	Input:
		Z seed from which mask is generated, an octet string
		l intended length in octets of the mask, at most 2**32*hLen
	Output: 
		mask, an octet string of length l
    '''
    # 1. len check
    if l > 2**32 * hLen:
        raise Exception("mask too long")
    
    T = bytearray()
    for i in range( ceil(l/hLen) ):
        c = I2OSP(i, 4)
        T += Hash(Z+c)
    return T[:l]

The RSAES-OAEP encryption scheme

def RSAES_OAEP_Encrypt((n, e), M, P ):
    # len(cipher) = k
    EM = EME-OAEP-Encode(M, P, k1)
    m = OS2IP(EM)
    c = RSAEP((n, e), m)
    C = I2OSP(c, k)
    return C

RSA Key Generator

# RSA Key Generator
def RSAKG(L : int , e : int ) -> int :
    """
    Input: 
    	L, the desired bit length for the modulus
		e, the public exponent, an odd integer greater than 1
 Output:
 		K , a valid private key
    """

Generating a random prime within a given interval

The prime generation algorithm suggested in this section uses the probabilistic Miller-Rabin primality test and does not check whether the primes are ‘‘strong’’ or not

# Prime Generator
def PG(r : int , s : int , e: int ) -> int :
    '''
    Input:
    	r, the lower bound for the prime to be generated
		s, the upper bound for the prime to be generated
		e, an odd positive integer
	Output:
		p, an odd random prime uniformly chosen from the interval [r,s] such that GCD(p − 1, e) = 1
    '''
    if r == s : raise Exception("0-length interval")
    # 1.
    p = randint(r-2,s-2)
    if p % 2 == 0:
        if p == s-2: p -= 1
        else : p += 1
    # 2.
    p += 2
    
    # 3.
    
        

Miller-Rabin test

Miller–Rabin primality test checks whether a specific property, which is known to hold for prime values, holds for the number under testing

The property
  1. For a given odd integer n > 2, let’s write n as $2^s \times d + 1$ where s and d are positive integers and d is odd.

  2. Let’s consider an integer a, called a base, such that 0 < a < n

  3. Then, n is said to be a strong probable prime to base $a$ if one of these congruence relations holds: $$ a^d \equiv 1 \mod n $$

    $$ a^{2^r \cdot d} \equiv -1 \ \mod n, (0 \le r < s) \ \text{another form : } (((a^d)^2)^2)^2... \equiv -1 \mod n $$

The test

no composite number is a strong pseudoprime to all bases at the same time. However trying them one by one is too inefficient

So, The parameter k determines the accuracy of the test. The greater the number of rounds, the more accurate the result

# return if n is a prime
def MillerRabin(n : int) -> bool:
    # get s,d
    temp = n - 1
    s = 0
    while temp % 2 == 0:
        temp //= 2
        s += 1
    d = temp
    
    # pick base and test for k times
    k = 30
    for test in range(k):
    	a = randint(2, n - 1)
    	# first test case
        remainder = pow(a,d,n)
        # a**d = 1 mod n     or    a**d = -1 mod n (r=0)
        if remainder == 1 or remainder == n - 1:
            return True
        else:
            power = remainder # since a^d is congruent with a^d % n
            				  # use power=pow(a,d) will wait forever
            # second test case 
            # r = 1,2,3,..., s-1
            for r in range(1,s):
                power *= power
                remainder = power % n
                if remainder == n - 1 :
                    return True
            return False
        
        
def isPrime(num : int ) -> bool :
    if num < 2 : return False
    lowprime = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273, 2281, 2287, 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357, 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, 2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617, 2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741, 2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903, 2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271, 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331, 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413, 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, 3517, 3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643, 3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709, 3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821, 3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917, 3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989, 4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057, 4073, 4079, 4091, 4093, 4099, 4111, 4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177, 4201, 4211, 4217, 4219, 4229, 4231, 4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283, 4289, 4297, 4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409, 4421, 4423, 4441, 4447, 4451, 4457, 4463, 4481, 4483, 4493, 4507, 4513, 4517, 4519, 4523, 4547, 4549, 4561, 4567, 4583, 4591, 4597, 4603, 4621, 4637, 4639, 4643, 4649, 4651, 4657, 4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733, 4751, 4759, 4783, 4787, 4789, 4793, 4799, 4801, 4813, 4817, 4831, 4861, 4871, 4877, 4889, 4903, 4909, 4919, 4931, 4933, 4937, 4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003, 5009, 5011, 5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087, 5099, 5101, 5107, 5113, 5119, 5147, 5153, 5167, 5171, 5179, 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273, 5279, 5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351, 5381, 5387, 5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443, 5449, 5471, 5477, 5479, 5483, 5501, 5503, 5507, 5519, 5521, 5527, 5531, 5557, 5563, 5569, 5573, 5581, 5591, 5623, 5639, 5641, 5647, 5651, 5653, 5657, 5659, 5669, 5683, 5689, 5693, 5701, 5711, 5717, 5737, 5741, 5743, 5749, 5779, 5783, 5791, 5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, 5851, 5857, 5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939, 5953, 5981, 5987, 6007, 6011, 6029, 6037, 6043, 6047, 6053, 6067, 6073, 6079, 6089, 6091, 6101, 6113, 6121, 6131, 6133, 6143, 6151, 6163, 6173, 6197, 6199, 6203, 6211, 6217, 6221, 6229, 6247, 6257, 6263, 6269, 6271, 6277, 6287, 6299, 6301, 6311, 6317, 6323, 6329, 6337, 6343, 6353, 6359, 6361, 6367, 6373, 6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469, 6473, 6481, 6491, 6521, 6529, 6547, 6551, 6553, 6563, 6569, 6571, 6577, 6581, 6599, 6607, 6619, 6637, 6653, 6659, 6661, 6673, 6679, 6689, 6691, 6701, 6703, 6709, 6719, 6733, 6737, 6761, 6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827, 6829, 6833, 6841, 6857, 6863, 6869, 6871, 6883, 6899, 6907, 6911, 6917, 6947, 6949, 6959, 6961, 6967, 6971, 6977, 6983, 6991, 6997, 7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103, 7109, 7121, 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207, 7211, 7213, 7219, 7229, 7237, 7243, 7247, 7253, 7283, 7297, 7307, 7309, 7321, 7331, 7333, 7349, 7351, 7369, 7393, 7411, 7417, 7433, 7451, 7457, 7459, 7477, 7481, 7487, 7489, 7499, 7507, 7517, 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561, 7573, 7577, 7583, 7589, 7591, 7603, 7607, 7621, 7639, 7643, 7649, 7669, 7673, 7681, 7687, 7691, 7699, 7703, 7717, 7723, 7727, 7741, 7753, 7757, 7759, 7789, 7793, 7817, 7823, 7829, 7841, 7853, 7867, 7873, 7877, 7879, 7883, 7901, 7907, 7919, 7927, 7933, 7937, 7949, 7951, 7963, 7993, 8009, 8011, 8017, 8039, 8053, 8059, 8069, 8081, 8087, 8089, 8093, 8101, 8111, 8117, 8123, 8147, 8161, 8167, 8171, 8179, 8191, 8209, 8219, 8221, 8231, 8233, 8237, 8243, 8263, 8269, 8273, 8287, 8291, 8293, 8297, 8311, 8317, 8329, 8353, 8363, 8369, 8377, 8387, 8389, 8419, 8423, 8429, 8431, 8443, 8447, 8461, 8467, 8501, 8513, 8521, 8527, 8537, 8539, 8543, 8563, 8573, 8581, 8597, 8599, 8609, 8623, 8627, 8629, 8641, 8647, 8663, 8669, 8677, 8681, 8689, 8693, 8699, 8707, 8713, 8719, 8731, 8737, 8741, 8747, 8753, 8761, 8779, 8783, 8803, 8807, 8819, 8821, 8831, 8837, 8839, 8849, 8861, 8863, 8867, 8887, 8893, 8923, 8929, 8933, 8941, 8951, 8963, 8969, 8971, 8999, 9001, 9007, 9011, 9013, 9029, 9041, 9043, 9049, 9059, 9067, 9091, 9103, 9109, 9127, 9133, 9137, 9151, 9157, 9161, 9173, 9181, 9187, 9199, 9203, 9209, 9221, 9227, 9239, 9241, 9257, 9277, 9281, 9283, 9293, 9311, 9319, 9323, 9337, 9341, 9343, 9349, 9371, 9377, 9391, 9397, 9403, 9413, 9419, 9421, 9431, 9433, 9437, 9439, 9461, 9463, 9467, 9473, 9479, 9491, 9497, 9511, 9521, 9533, 9539, 9547, 9551, 9587, 9601, 9613, 9619, 9623, 9629, 9631, 9643, 9649, 9661, 9677, 9679, 9689, 9697, 9719, 9721, 9733, 9739, 9743, 9749, 9767, 9769, 9781, 9787, 9791, 9803, 9811, 9817, 9829, 9833, 9839, 9851, 9857, 9859, 9871, 9883, 9887, 9901, 9907, 9923, 9929, 9931, 9941, 9949, 9967, 9973, 10007, 10009, 10037, 10039, 10061, 10067, 10069, 10079, 10091, 10093, 10099, 10103, 10111, 10133, 10139, 10141, 10151, 10159, 10163, 10169, 10177, 10181, 10193, 10211, 10223, 10243, 10247, 10253, 10259, 10267, 10271, 10273, 10289, 10301, 10303, 10313, 10321, 10331, 10333, 10337, 10343, 10357, 10369, 10391, 10399, 10427, 10429, 10433, 10453, 10457, 10459, 10463, 10477, 10487, 10499, 10501, 10513, 10529, 10531, 10559, 10567, 10589, 10597, 10601, 10607, 10613, 10627, 10631, 10639, 10651, 10657, 10663, 10667, 10687, 10691, 10709, 10711, 10723, 10729, 10733, 10739, 10753, 10771, 10781, 10789, 10799, 10831, 10837, 10847, 10853, 10859, 10861, 10867, 10883, 10889, 10891, 10903, 10909, 10937, 10939, 10949, 10957, 10973, 10979, 10987, 10993, 11003, 11027, 11047, 11057, 11059, 11069, 11071, 11083, 11087, 11093, 11113, 11117, 11119, 11131, 11149, 11159, 11161, 11171, 11173, 11177, 11197, 11213, 11239, 11243, 11251, 11257, 11261, 11273, 11279, 11287, 11299, 11311, 11317, 11321, 11329, 11351, 11353, 11369, 11383, 11393, 11399, 11411, 11423, 11437, 11443, 11447, 11467, 11471, 11483, 11489, 11491, 11497, 11503, 11519, 11527, 11549, 11551, 11579, 11587, 11593, 11597, 11617, 11621, 11633, 11657, 11677, 11681, 11689, 11699, 11701, 11717, 11719, 11731, 11743, 11777, 11779, 11783, 11789, 11801, 11807, 11813, 11821, 11827, 11831, 11833, 11839, 11863, 11867, 11887, 11897, 11903, 11909, 11923, 11927, 11933, 11939, 11941, 11953, 11959, 11969, 11971, 11981, 11987, 12007, 12011, 12037, 12041, 12043, 12049, 12071, 12073, 12097, 12101, 12107, 12109, 12113, 12119, 12143, 12149, 12157, 12161, 12163, 12197, 12203, 12211, 12227, 12239, 12241, 12251, 12253, 12263, 12269, 12277, 12281, 12289, 12301, 12323, 12329, 12343, 12347, 12373, 12377, 12379, 12391, 12401, 12409, 12413, 12421, 12433, 12437, 12451, 12457, 12473, 12479, 12487, 12491, 12497, 12503, 12511, 12517, 12527, 12539, 12541, 12547, 12553, 12569, 12577, 12583, 12589, 12601, 12611, 12613, 12619, 12637, 12641, 12647, 12653, 12659, 12671, 12689, 12697, 12703, 12713, 12721, 12739, 12743, 12757, 12763, 12781, 12791, 12799, 12809, 12821, 12823, 12829, 12841, 12853, 12889, 12893, 12899, 12907, 12911, 12917, 12919, 12923, 12941, 12953, 12959, 12967, 12973, 12979, 12983, 13001, 13003, 13007, 13009, 13033, 13037, 13043, 13049, 13063, 13093, 13099, 13103, 13109, 13121, 13127, 13147, 13151, 13159, 13163, 13171, 13177, 13183, 13187, 13217, 13219, 13229, 13241, 13249, 13259, 13267, 13291, 13297, 13309, 13313, 13327, 13331, 13337, 13339, 13367, 13381, 13397, 13399, 13411, 13417, 13421, 13441, 13451, 13457, 13463, 13469, 13477, 13487, 13499, 13513, 13523, 13537, 13553, 13567, 13577, 13591, 13597, 13613, 13619, 13627, 13633, 13649, 13669, 13679, 13681, 13687, 13691, 13693, 13697, 13709, 13711, 13721, 13723, 13729, 13751, 13757, 13759, 13763, 13781, 13789, 13799, 13807, 13829, 13831, 13841, 13859, 13873, 13877, 13879, 13883, 13901, 13903, 13907, 13913, 13921, 13931, 13933, 13963, 13967, 13997, 13999, 14009, 14011, 14029, 14033, 14051, 14057, 14071, 14081, 14083, 14087, 14107, 14143, 14149, 14153, 14159, 14173, 14177, 14197, 14207, 14221, 14243, 14249, 14251, 14281, 14293, 14303, 14321, 14323, 14327, 14341, 14347, 14369, 14387, 14389, 14401, 14407, 14411, 14419, 14423, 14431, 14437, 14447, 14449, 14461, 14479, 14489, 14503, 14519, 14533, 14537, 14543, 14549, 14551, 14557, 14561, 14563, 14591, 14593, 14621, 14627, 14629, 14633, 14639, 14653, 14657, 14669, 14683, 14699, 14713, 14717, 14723, 14731, 14737, 14741, 14747, 14753, 14759, 14767, 14771, 14779, 14783, 14797, 14813, 14821, 14827, 14831, 14843, 14851, 14867, 14869, 14879, 14887, 14891, 14897, 14923, 14929, 14939, 14947, 14951, 14957, 14969, 14983, 15013, 15017, 15031, 15053, 15061, 15073, 15077, 15083, 15091, 15101, 15107, 15121, 15131, 15137, 15139, 15149, 15161, 15173, 15187, 15193, 15199, 15217, 15227, 15233, 15241, 15259, 15263, 15269, 15271, 15277, 15287, 15289, 15299, 15307, 15313, 15319, 15329, 15331, 15349, 15359, 15361, 15373, 15377, 15383, 15391, 15401, 15413, 15427, 15439, 15443, 15451, 15461, 15467, 15473, 15493, 15497, 15511, 15527, 15541, 15551, 15559, 15569, 15581, 15583, 15601, 15607, 15619, 15629, 15641, 15643, 15647, 15649, 15661, 15667, 15671, 15679, 15683, 15727, 15731, 15733, 15737, 15739, 15749, 15761, 15767, 15773, 15787, 15791, 15797, 15803, 15809, 15817, 15823, 15859, 15877, 15881, 15887, 15889, 15901, 15907, 15913, 15919, 15923, 15937, 15959, 15971, 15973, 15991, 16001, 16007, 16033, 16057, 16061, 16063, 16067, 16069, 16073, 16087, 16091, 16097, 16103, 16111, 16127, 16139, 16141, 16183, 16187, 16189, 16193, 16217, 16223, 16229, 16231, 16249, 16253, 16267, 16273, 16301, 16319, 16333, 16339, 16349, 16361, 16363, 16369, 16381, 16411, 16417, 16421, 16427, 16433, 16447, 16451, 16453, 16477, 16481, 16487, 16493, 16519, 16529, 16547, 16553, 16561, 16567, 16573, 16603, 16607, 16619, 16631, 16633, 16649, 16651, 16657, 16661, 16673, 16691, 16693, 16699, 16703, 16729, 16741, 16747, 16759, 16763, 16787, 16811, 16823, 16829, 16831, 16843, 16871, 16879, 16883, 16889, 16901, 16903, 16921, 16927, 16931, 16937, 16943, 16963, 16979, 16981, 16987, 16993, 17011, 17021, 17027, 17029, 17033, 17041, 17047, 17053, 17077, 17093, 17099, 17107, 17117, 17123, 17137, 17159, 17167, 17183, 17189, 17191, 17203, 17207, 17209, 17231, 17239, 17257, 17291, 17293, 17299, 17317, 17321, 17327, 17333, 17341, 17351, 17359, 17377, 17383, 17387, 17389]
    if num in lowprime: return True
    for prime in lowprime:
        if num % prime == 0: return False
    return MillerRabin(num)
Generate Large Prime
# return a large prime number with length-bits
def Prime(length : int ) -> int :
    while True:
    	prime = randrange(2**(length-1) , 2**length)
        if isPrime(prime):
            return prime

# MD4
import hashlib
hashlib.new('md4' , 'Hello'.encode('utf8')).hexdigest()

GUI

eel error handling

About

another stupid program

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published