Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Derive PartialEq Analysis #907

Merged
merged 12 commits into from
Aug 14, 2017
18 changes: 16 additions & 2 deletions src/codegen/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@ use ir::comment;
use ir::comp::{Base, Bitfield, BitfieldUnit, CompInfo, CompKind, Field,
FieldData, FieldMethods, Method, MethodKind};
use ir::context::{BindgenContext, ItemId};
use ir::derive::{CanDeriveCopy, CanDeriveDebug, CanDeriveDefault, CanDeriveHash};
use ir::derive::{CanDeriveCopy, CanDeriveDebug, CanDeriveDefault, CanDeriveHash, CanDerivePartialEq};
use ir::dot;
use ir::enum_ty::{Enum, EnumVariant, EnumVariantValue};
use ir::function::{Abi, Function, FunctionSig};
Expand Down Expand Up @@ -1495,6 +1495,10 @@ impl CodeGenerator for CompInfo {
derives.push("Hash");
}

if item.can_derive_partialeq(ctx) {
derives.push("PartialEq");
}

if !derives.is_empty() {
attributes.push(attributes::derives(&derives))
}
Expand Down Expand Up @@ -3569,13 +3573,23 @@ mod utils {
)
.unwrap();

let union_field_partialeq_impl = quote_item!(&ctx.ext_cx(),
impl<T> ::$prefix::cmp::PartialEq for __BindgenUnionField<T> {
fn eq(&self, _other: &__BindgenUnionField<T>) -> bool {
true
}
}
)
.unwrap();

let items = vec![union_field_decl,
union_field_impl,
union_field_default_impl,
union_field_clone_impl,
union_field_copy_impl,
union_field_debug_impl,
union_field_hash_impl];
union_field_hash_impl,
union_field_partialeq_impl];

let old_items = mem::replace(result, items);
result.extend(old_items.into_iter());
Expand Down
334 changes: 334 additions & 0 deletions src/ir/analysis/derive_partial_eq.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,334 @@
//! Determining which types for which we can emit `#[derive(PartialEq)]`.

use super::{ConstrainResult, MonotoneFramework, generate_dependencies};
use std::collections::HashSet;
use std::collections::HashMap;
use ir::context::{BindgenContext, ItemId};
use ir::item::IsOpaque;
use ir::traversal::EdgeKind;
use ir::ty::RUST_DERIVE_IN_ARRAY_LIMIT;
use ir::ty::TypeKind;
use ir::comp::Field;
use ir::comp::FieldMethods;
use ir::derive::CanTriviallyDerivePartialEq;
use ir::comp::CompKind;

/// An analysis that finds for each IR item whether partialeq cannot be derived.
///
/// We use the monotone constraint function `cannot_derive_partial_eq`, defined as
/// follows:
///
/// * If T is Opaque and layout of the type is known, get this layout as opaque
/// type and check whether it can be derived using trivial checks.
/// * If T is Array type, partialeq cannot be derived if the length of the array is
/// larger than the limit or the type of data the array contains cannot derive
/// partialeq.
/// * If T is a type alias, a templated alias or an indirection to another type,
/// partialeq cannot be derived if the type T refers to cannot be derived partialeq.
/// * If T is a compound type, partialeq cannot be derived if any of its base member
/// or field cannot be derived partialeq.
/// * If T is a pointer, T cannot be derived partialeq if T is a function pointer
/// and the function signature cannot be derived partialeq.
/// * If T is an instantiation of an abstract template definition, T cannot be
/// derived partialeq if any of the template arguments or template definition
/// cannot derive partialeq.
#[derive(Debug, Clone)]
pub struct CannotDerivePartialEq<'ctx, 'gen>
where 'gen: 'ctx
{
ctx: &'ctx BindgenContext<'gen>,

// The incremental result of this analysis's computation. Everything in this
// set cannot derive partialeq.
cannot_derive_partialeq: HashSet<ItemId>,

// Dependencies saying that if a key ItemId has been inserted into the
// `cannot_derive_partialeq` set, then each of the ids in Vec<ItemId> need to be
// considered again.
//
// This is a subset of the natural IR graph with reversed edges, where we
// only include the edges from the IR graph that can affect whether a type
// can derive partialeq or not.
dependencies: HashMap<ItemId, Vec<ItemId>>,
}

impl<'ctx, 'gen> CannotDerivePartialEq<'ctx, 'gen> {
fn consider_edge(kind: EdgeKind) -> bool {
match kind {
// These are the only edges that can affect whether a type can derive
// partialeq or not.
EdgeKind::BaseMember |
EdgeKind::Field |
EdgeKind::TypeReference |
EdgeKind::VarType |
EdgeKind::TemplateArgument |
EdgeKind::TemplateDeclaration |
EdgeKind::TemplateParameterDefinition => true,

EdgeKind::Constructor |
EdgeKind::Destructor |
EdgeKind::FunctionReturn |
EdgeKind::FunctionParameter |
EdgeKind::InnerType |
EdgeKind::InnerVar |
EdgeKind::Method => false,
EdgeKind::Generic => false,
}
}

fn insert(&mut self, id: ItemId) -> ConstrainResult {
trace!("inserting {:?} into the cannot_derive_partialeq set", id);

let was_not_already_in_set = self.cannot_derive_partialeq.insert(id);
assert!(
was_not_already_in_set,
"We shouldn't try and insert {:?} twice because if it was \
already in the set, `constrain` should have exited early.",
id
);

ConstrainResult::Changed
}
}

impl<'ctx, 'gen> MonotoneFramework for CannotDerivePartialEq<'ctx, 'gen> {
type Node = ItemId;
type Extra = &'ctx BindgenContext<'gen>;
type Output = HashSet<ItemId>;

fn new(ctx: &'ctx BindgenContext<'gen>) -> CannotDerivePartialEq<'ctx, 'gen> {
let cannot_derive_partialeq = HashSet::new();
let dependencies = generate_dependencies(ctx, Self::consider_edge);

CannotDerivePartialEq {
ctx,
cannot_derive_partialeq,
dependencies,
}
}

fn initial_worklist(&self) -> Vec<ItemId> {
self.ctx.whitelisted_items().iter().cloned().collect()
}

fn constrain(&mut self, id: ItemId) -> ConstrainResult {
trace!("constrain: {:?}", id);

if self.cannot_derive_partialeq.contains(&id) {
trace!(" already know it cannot derive PartialEq");
return ConstrainResult::Same;
}

let item = self.ctx.resolve_item(id);
let ty = match item.as_type() {
Some(ty) => ty,
None => {
trace!(" not a type; ignoring");
return ConstrainResult::Same;
}
};

trace!("ty: {:?}", ty);
if item.is_opaque(self.ctx, &()) {
let layout_can_derive = ty.layout(self.ctx).map_or(true, |l| {
l.opaque().can_trivially_derive_partialeq()
});
return if layout_can_derive {
trace!(" we can trivially derive PartialEq for the layout");
ConstrainResult::Same
} else {
trace!(" we cannot derive PartialEq for the layout");
self.insert(id)
};
}

if ty.layout(self.ctx).map_or(false, |l| l.align > RUST_DERIVE_IN_ARRAY_LIMIT) {
// We have to be conservative: the struct *could* have enough
// padding that we emit an array that is longer than
// `RUST_DERIVE_IN_ARRAY_LIMIT`. If we moved padding calculations
// into the IR and computed them before this analysis, then we could
// be precise rather than conservative here.
return self.insert(id);
}

match *ty.kind() {
// Handle the simple cases. These can derive partialeq without further
// information.
TypeKind::Void |
TypeKind::NullPtr |
TypeKind::Int(..) |
TypeKind::Complex(..) |
TypeKind::Float(..) |
TypeKind::Enum(..) |
TypeKind::Named |
TypeKind::UnresolvedTypeRef(..) |
TypeKind::BlockPointer |
TypeKind::Reference(..) |
TypeKind::ObjCInterface(..) |
TypeKind::ObjCId |
TypeKind::ObjCSel => {
trace!(" simple type that can always derive PartialEq");
ConstrainResult::Same
}

TypeKind::Array(t, len) => {
if self.cannot_derive_partialeq.contains(&t) {
trace!(" arrays of T for which we cannot derive PartialEq \
also cannot derive PartialEq");
return self.insert(id);
}

if len <= RUST_DERIVE_IN_ARRAY_LIMIT {
trace!(" array is small enough to derive PartialEq");
ConstrainResult::Same
} else {
trace!(" array is too large to derive PartialEq");
self.insert(id)
}
}

TypeKind::Pointer(inner) => {
let inner_type = self.ctx.resolve_type(inner).canonical_type(self.ctx);
if let TypeKind::Function(ref sig) = *inner_type.kind() {
if !sig.can_trivially_derive_partialeq() {
trace!(" function pointer that can't trivially derive PartialEq");
return self.insert(id);
}
}
trace!(" pointers can derive PartialEq");
ConstrainResult::Same
}

TypeKind::Function(ref sig) => {
if !sig.can_trivially_derive_partialeq() {
trace!(" function that can't trivially derive PartialEq");
return self.insert(id);
}
trace!(" function can derive PartialEq");
ConstrainResult::Same
}

TypeKind::ResolvedTypeRef(t) |
TypeKind::TemplateAlias(t, _) |
TypeKind::Alias(t) => {
if self.cannot_derive_partialeq.contains(&t) {
trace!(" aliases and type refs to T which cannot derive \
PartialEq also cannot derive PartialEq");
self.insert(id)
} else {
trace!(" aliases and type refs to T which can derive \
PartialEq can also derive PartialEq");
ConstrainResult::Same
}
}

TypeKind::Comp(ref info) => {
assert!(
!info.has_non_type_template_params(),
"The early ty.is_opaque check should have handled this case"
);

if info.kind() == CompKind::Union {
if self.ctx.options().rust_features().untagged_union() {
trace!(" cannot derive PartialEq for Rust unions");
return self.insert(id);
}

if ty.layout(self.ctx)
.map_or(true,
|l| l.opaque().can_trivially_derive_partialeq()) {
trace!(" union layout can trivially derive PartialEq");
return ConstrainResult::Same;
} else {
trace!(" union layout cannot derive PartialEq");
return self.insert(id);
}
}

let bases_cannot_derive = info.base_members()
.iter()
.any(|base| !self.ctx.whitelisted_items().contains(&base.ty) ||
self.cannot_derive_partialeq.contains(&base.ty));
if bases_cannot_derive {
trace!(" base members cannot derive PartialEq, so we can't \
either");
return self.insert(id);
}

let fields_cannot_derive = info.fields()
.iter()
.any(|f| {
match *f {
Field::DataMember(ref data) => {
!self.ctx.whitelisted_items().contains(&data.ty()) ||
self.cannot_derive_partialeq.contains(&data.ty())
}
Field::Bitfields(ref bfu) => {
bfu.bitfields()
.iter().any(|b| {
!self.ctx.whitelisted_items().contains(&b.ty()) ||
self.cannot_derive_partialeq.contains(&b.ty())
})
}
}
});
if fields_cannot_derive {
trace!(" fields cannot derive PartialEq, so we can't either");
return self.insert(id);
}

trace!(" comp can derive PartialEq");
ConstrainResult::Same
}

TypeKind::TemplateInstantiation(ref template) => {
let args_cannot_derive = template.template_arguments()
.iter()
.any(|arg| self.cannot_derive_partialeq.contains(&arg));
if args_cannot_derive {
trace!(" template args cannot derive PartialEq, so \
insantiation can't either");
return self.insert(id);
}

assert!(
!template.template_definition().is_opaque(self.ctx, &()),
"The early ty.is_opaque check should have handled this case"
);
let def_cannot_derive = self.cannot_derive_partialeq
.contains(&template.template_definition());
if def_cannot_derive {
trace!(" template definition cannot derive PartialEq, so \
insantiation can't either");
return self.insert(id);
}

trace!(" template instantiation can derive PartialEq");
ConstrainResult::Same
}

TypeKind::Opaque => {
unreachable!(
"The early ty.is_opaque check should have handled this case"
)
}
}
}

fn each_depending_on<F>(&self, id: ItemId, mut f: F)
where F: FnMut(ItemId),
{
if let Some(edges) = self.dependencies.get(&id) {
for item in edges {
trace!("enqueue {:?} into worklist", item);
f(*item);
}
}
}
}

impl<'ctx, 'gen> From<CannotDerivePartialEq<'ctx, 'gen>> for HashSet<ItemId> {
fn from(analysis: CannotDerivePartialEq<'ctx, 'gen>) -> Self {
analysis.cannot_derive_partialeq
}
}
2 changes: 2 additions & 0 deletions src/ir/analysis/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -53,6 +53,8 @@ mod has_type_param_in_array;
pub use self::has_type_param_in_array::HasTypeParameterInArray;
mod derive_hash;
pub use self::derive_hash::CannotDeriveHash;
mod derive_partial_eq;
pub use self::derive_partial_eq::CannotDerivePartialEq;

use ir::context::{BindgenContext, ItemId};
use ir::traversal::{EdgeKind, Trace};
Expand Down
Loading