Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

impl_trait_in_bindings and pick-constraint region bounds #61773

Open
nikomatsakis opened this issue Jun 12, 2019 · 5 comments
Open

impl_trait_in_bindings and pick-constraint region bounds #61773

nikomatsakis opened this issue Jun 12, 2019 · 5 comments
Labels
A-impl-trait Area: `impl Trait`. Universally / existentially quantified anonymous types with static dispatch. F-impl_trait_in_bindings `#![feature(impl_trait_in_bindings)]` F-member_constraints `#[feature(member_constraints)]` requires-nightly This issue requires a nightly compiler in some way. T-compiler Relevant to the compiler team, which will review and decide on the PR/issue. T-lang Relevant to the language team, which will review and decide on the PR/issue.

Comments

@nikomatsakis
Copy link
Contributor

I'm working on #56238. In the process, I'm extending how impl Trait lifetime inference works -- in particular in scenarios involving multiple, unrelated lifetimes, such as impl Trait<'a, 'b>. The challenge here is that each region 'h in the hidden type must be equal to 'a or 'b, but we can't readily express that relationship in terms of our usual "outlives relationships". The solver is thus extended with a "pick constraint", written pick 'h from ['a, 'b], which expresses that 'h must be equal to 'a or 'b. The current integration into the solver, however, requires that the regions involved are lifetime parameters. This is always true for impl Trait used at function boundaries, but it is not true for let bindings.

The challenge is that if you have a program like:

trait Foo<'_> { }
impl Foo<'_> for &u32 { }

fn bar() {
  let x: impl Foo<'_> = &44; // let's call the region variable for `'_` `'1`
}

then we would wind up with pick '0 from ['1, 'static], where '0 is the region variable in the hidden type (&'0 u32) and '1 is the region variable in the bounds Foo<'1>. This is tricky because both '0 and '1 are being inferred -- so making them equal may have other repercussions.

For the time being, I've chosen to include some assertions that this scenario never comes up. I'm tagging a FIXME in the code with this issue number. I was going to create some tests, but owing to the ICE #60473 (not unrelated to this issue, actually), that proved difficult, so I'll just post comments in here instead.

@nikomatsakis nikomatsakis added T-compiler Relevant to the compiler team, which will review and decide on the PR/issue. A-impl-trait Area: `impl Trait`. Universally / existentially quantified anonymous types with static dispatch. labels Jun 12, 2019
@nikomatsakis
Copy link
Contributor Author

Example test. An easy case is when they use named regions from in scope:

trait Foo<'_> { }
impl Foo<'_> for &u32 { }

fn bar<'a>(data: &'a u32) {
  let x: impl Foo<'a> = data;
}

@nikomatsakis
Copy link
Contributor Author

Example test. A harder case is when we have inferred lifetime variables.

trait Trait<'a, 'b> { }
impl<T> Trait<'_, '_> for T { }


fn bar<'a>(data0: &'a u32, data1: &'b u32) {
  let x: impl Trait<'_, '_> = (data0, data1);
  force_equal(x);
}

fn force_equal<'a>(t: impl Trait<'a, 'a>) { }

I expect this to compile because:

  • the force_equal method forces the two '_ to be equal, so we effectively have impl Trait<'x, 'x>
  • the hidden type is a tuple (&'0 u32, &'1 u32) where 'a: '0 and 'b: '1
  • thus '0 and '1 must either equal 'x or 'static
  • but 'x can be some portion of the fn body -- basically the scope of x

@Centril Centril added the T-lang Relevant to the language team, which will review and decide on the PR/issue. label Jun 12, 2019
@Centril Centril added F-member_constraints `#[feature(member_constraints)]` F-impl_trait_in_bindings `#![feature(impl_trait_in_bindings)]` requires-nightly This issue requires a nightly compiler in some way. labels Jul 28, 2019
@vandenheuvel

This comment has been minimized.

@vandenheuvel

This comment has been minimized.

@nikomatsakis

This comment has been minimized.

JohnTitor added a commit to JohnTitor/rust that referenced this issue May 25, 2021
…raints-61997, r=jackh726

stabilize member constraints

Stabilizes the use of "member constraints" in solving `impl Trait` bindings. This is a step towards stabilizing a "MVP" of "named impl Trait".

# Member constraint stabilization report

| Info | |
| --- | --- |
| Tracking issue | [rust-lang#61997](rust-lang#61997) |
| Implementation history | [rust-lang#61775] |
| rustc-dev-guide coverage | [link](https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/member_constraints.html) |
| Complications | [rust-lang#61773] |

[rust-lang#61775]: rust-lang#61775
[rust-lang#61773]: rust-lang#61773

## Background

Member constraints are an extension to our region solver that was introduced to make async fn region solving tractable. There are used in situations like the following:

```rust
fn foo<'a, 'b>(...) -> impl Trait<'a, 'b> { .. }
```

The problem here is that every region R in the hidden type must be equal to *either* `'a` *or* `'b` (or `'static`). This cannot be expressed simply via 'outlives constriants' like `R: 'a`. Therefore, we introduce a 'member constraint' `R member of ['a, 'b]`.

These constraints were introduced in [rust-lang#61775]. At the time, we kept them feature gated and used them only for `impl Trait` return types that are derived from `async fn`. The intention, however, was always to support them in other contexts once we had time to gain more experience with them.

**In the time since their introduction, we have encountered no surprises or bugs due to these member constraints.** They are tested extensively as part of every async function that involves multiple unrelated lifetimes in its arguments.

## Tests

The behavior of member constraints is covered by the following tests:

* [`src/test/ui/async-await/multiple-lifetimes`](https://github.com/rust-lang/rust/tree/20e032e65007ff1376e8480c1fbdb0a5068028fa/src/test/ui/async-await/multiple-lifetimes) -- tests using the async await, which are mostly already stabilized
* [`src/test/ui/impl-trait/multiple-lifetimes.rs`](https://github.com/rust-lang/rust/blob/20e032e65007ff1376e8480c1fbdb0a5068028fa/src/test/ui/impl-trait/multiple-lifetimes.rs)
* [`src/test/ui/impl-trait/multiple-lifetimes/ordinary-bounds-unsuited.rs`](https://github.com/rust-lang/rust/blob/20e032e65007ff1376e8480c1fbdb0a5068028fa/src/test/ui/impl-trait/multiple-lifetimes/ordinary-bounds-unsuited.rs)
* [`src/test/ui/async-await/multiple-lifetimes/ret-impl-trait-fg.rs`](https://github.com/rust-lang/rust/blob/20e032e65007ff1376e8480c1fbdb0a5068028fa/src/test/ui/async-await/multiple-lifetimes/ret-impl-trait-fg.rs)
* [`src/test/ui/async-await/multiple-lifetimes/ret-impl-trait-one.rs`](https://github.com/rust-lang/rust/blob/20e032e65007ff1376e8480c1fbdb0a5068028fa/src/test/ui/async-await/multiple-lifetimes/ret-impl-trait-one.rs)

These tests cover a number of scenarios:

* `-> implTrait<'a, 'b>` with unrelated lifetimes `'a` and `'b`, as described above
* `async fn` that returns an `impl Trait` like the previous case, which desugars to a kind of "nested" impl trait like `impl Future<Output = impl Trait<'a, 'b>>`

## Potential concerns

There is a potential interaction with `impl Trait` on local variables, described in [rust-lang#61773]. The challenge is that if you have a program like:

```rust=
trait Foo<'_> { }
impl Foo<'_> for &u32 { }

fn bar() {
  let x: impl Foo<'_> = &44; // let's call the region variable for `'_` `'1`
}
```

then we would wind up with `'0 member of ['1, 'static]`, where `'0` is the region variable in the hidden type (`&'0 u32`) and `'1` is the region variable in the bounds `Foo<'1>`. This is tricky because both `'0` and `'1` are being inferred -- so making them equal may have other repercussions.

That said, `impl Trait` in bindings are not stable, and the implementation is pretty far from stabilization. Moreover, the difficulty highlighted here is not due to the presence of member constraints -- it's inherent to the design of the language. In other words, stabilizing member constraints does not actually cause us to accept anything that would make this problem any harder.

So I don't see this as a blocker to stabilization of member constraints; it is potentially a blocker to stablization of `impl trait` in let bindings.
Dylan-DPC-zz pushed a commit to Dylan-DPC-zz/rust that referenced this issue May 26, 2021
…raints-61997, r=jackh726

stabilize member constraints

Stabilizes the use of "member constraints" in solving `impl Trait` bindings. This is a step towards stabilizing a "MVP" of "named impl Trait".

# Member constraint stabilization report

| Info | |
| --- | --- |
| Tracking issue | [rust-lang#61997](rust-lang#61997) |
| Implementation history | [rust-lang#61775] |
| rustc-dev-guide coverage | [link](https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/member_constraints.html) |
| Complications | [rust-lang#61773] |

[rust-lang#61775]: rust-lang#61775
[rust-lang#61773]: rust-lang#61773

## Background

Member constraints are an extension to our region solver that was introduced to make async fn region solving tractable. There are used in situations like the following:

```rust
fn foo<'a, 'b>(...) -> impl Trait<'a, 'b> { .. }
```

The problem here is that every region R in the hidden type must be equal to *either* `'a` *or* `'b` (or `'static`). This cannot be expressed simply via 'outlives constriants' like `R: 'a`. Therefore, we introduce a 'member constraint' `R member of ['a, 'b]`.

These constraints were introduced in [rust-lang#61775]. At the time, we kept them feature gated and used them only for `impl Trait` return types that are derived from `async fn`. The intention, however, was always to support them in other contexts once we had time to gain more experience with them.

**In the time since their introduction, we have encountered no surprises or bugs due to these member constraints.** They are tested extensively as part of every async function that involves multiple unrelated lifetimes in its arguments.

## Tests

The behavior of member constraints is covered by the following tests:

* [`src/test/ui/async-await/multiple-lifetimes`](https://github.com/rust-lang/rust/tree/20e032e65007ff1376e8480c1fbdb0a5068028fa/src/test/ui/async-await/multiple-lifetimes) -- tests using the async await, which are mostly already stabilized
* [`src/test/ui/impl-trait/multiple-lifetimes.rs`](https://github.com/rust-lang/rust/blob/20e032e65007ff1376e8480c1fbdb0a5068028fa/src/test/ui/impl-trait/multiple-lifetimes.rs)
* [`src/test/ui/impl-trait/multiple-lifetimes/ordinary-bounds-unsuited.rs`](https://github.com/rust-lang/rust/blob/20e032e65007ff1376e8480c1fbdb0a5068028fa/src/test/ui/impl-trait/multiple-lifetimes/ordinary-bounds-unsuited.rs)
* [`src/test/ui/async-await/multiple-lifetimes/ret-impl-trait-fg.rs`](https://github.com/rust-lang/rust/blob/20e032e65007ff1376e8480c1fbdb0a5068028fa/src/test/ui/async-await/multiple-lifetimes/ret-impl-trait-fg.rs)
* [`src/test/ui/async-await/multiple-lifetimes/ret-impl-trait-one.rs`](https://github.com/rust-lang/rust/blob/20e032e65007ff1376e8480c1fbdb0a5068028fa/src/test/ui/async-await/multiple-lifetimes/ret-impl-trait-one.rs)

These tests cover a number of scenarios:

* `-> implTrait<'a, 'b>` with unrelated lifetimes `'a` and `'b`, as described above
* `async fn` that returns an `impl Trait` like the previous case, which desugars to a kind of "nested" impl trait like `impl Future<Output = impl Trait<'a, 'b>>`

## Potential concerns

There is a potential interaction with `impl Trait` on local variables, described in [rust-lang#61773]. The challenge is that if you have a program like:

```rust=
trait Foo<'_> { }
impl Foo<'_> for &u32 { }

fn bar() {
  let x: impl Foo<'_> = &44; // let's call the region variable for `'_` `'1`
}
```

then we would wind up with `'0 member of ['1, 'static]`, where `'0` is the region variable in the hidden type (`&'0 u32`) and `'1` is the region variable in the bounds `Foo<'1>`. This is tricky because both `'0` and `'1` are being inferred -- so making them equal may have other repercussions.

That said, `impl Trait` in bindings are not stable, and the implementation is pretty far from stabilization. Moreover, the difficulty highlighted here is not due to the presence of member constraints -- it's inherent to the design of the language. In other words, stabilizing member constraints does not actually cause us to accept anything that would make this problem any harder.

So I don't see this as a blocker to stabilization of member constraints; it is potentially a blocker to stablization of `impl trait` in let bindings.
Dylan-DPC-zz pushed a commit to Dylan-DPC-zz/rust that referenced this issue May 27, 2021
…raints-61997, r=jackh726

stabilize member constraints

Stabilizes the use of "member constraints" in solving `impl Trait` bindings. This is a step towards stabilizing a "MVP" of "named impl Trait".

# Member constraint stabilization report

| Info | |
| --- | --- |
| Tracking issue | [rust-lang#61997](rust-lang#61997) |
| Implementation history | [rust-lang#61775] |
| rustc-dev-guide coverage | [link](https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/member_constraints.html) |
| Complications | [rust-lang#61773] |

[rust-lang#61775]: rust-lang#61775
[rust-lang#61773]: rust-lang#61773

## Background

Member constraints are an extension to our region solver that was introduced to make async fn region solving tractable. There are used in situations like the following:

```rust
fn foo<'a, 'b>(...) -> impl Trait<'a, 'b> { .. }
```

The problem here is that every region R in the hidden type must be equal to *either* `'a` *or* `'b` (or `'static`). This cannot be expressed simply via 'outlives constriants' like `R: 'a`. Therefore, we introduce a 'member constraint' `R member of ['a, 'b]`.

These constraints were introduced in [rust-lang#61775]. At the time, we kept them feature gated and used them only for `impl Trait` return types that are derived from `async fn`. The intention, however, was always to support them in other contexts once we had time to gain more experience with them.

**In the time since their introduction, we have encountered no surprises or bugs due to these member constraints.** They are tested extensively as part of every async function that involves multiple unrelated lifetimes in its arguments.

## Tests

The behavior of member constraints is covered by the following tests:

* [`src/test/ui/async-await/multiple-lifetimes`](https://github.com/rust-lang/rust/tree/20e032e65007ff1376e8480c1fbdb0a5068028fa/src/test/ui/async-await/multiple-lifetimes) -- tests using the async await, which are mostly already stabilized
* [`src/test/ui/impl-trait/multiple-lifetimes.rs`](https://github.com/rust-lang/rust/blob/20e032e65007ff1376e8480c1fbdb0a5068028fa/src/test/ui/impl-trait/multiple-lifetimes.rs)
* [`src/test/ui/impl-trait/multiple-lifetimes/ordinary-bounds-unsuited.rs`](https://github.com/rust-lang/rust/blob/20e032e65007ff1376e8480c1fbdb0a5068028fa/src/test/ui/impl-trait/multiple-lifetimes/ordinary-bounds-unsuited.rs)
* [`src/test/ui/async-await/multiple-lifetimes/ret-impl-trait-fg.rs`](https://github.com/rust-lang/rust/blob/20e032e65007ff1376e8480c1fbdb0a5068028fa/src/test/ui/async-await/multiple-lifetimes/ret-impl-trait-fg.rs)
* [`src/test/ui/async-await/multiple-lifetimes/ret-impl-trait-one.rs`](https://github.com/rust-lang/rust/blob/20e032e65007ff1376e8480c1fbdb0a5068028fa/src/test/ui/async-await/multiple-lifetimes/ret-impl-trait-one.rs)

These tests cover a number of scenarios:

* `-> implTrait<'a, 'b>` with unrelated lifetimes `'a` and `'b`, as described above
* `async fn` that returns an `impl Trait` like the previous case, which desugars to a kind of "nested" impl trait like `impl Future<Output = impl Trait<'a, 'b>>`

## Potential concerns

There is a potential interaction with `impl Trait` on local variables, described in [rust-lang#61773]. The challenge is that if you have a program like:

```rust=
trait Foo<'_> { }
impl Foo<'_> for &u32 { }

fn bar() {
  let x: impl Foo<'_> = &44; // let's call the region variable for `'_` `'1`
}
```

then we would wind up with `'0 member of ['1, 'static]`, where `'0` is the region variable in the hidden type (`&'0 u32`) and `'1` is the region variable in the bounds `Foo<'1>`. This is tricky because both `'0` and `'1` are being inferred -- so making them equal may have other repercussions.

That said, `impl Trait` in bindings are not stable, and the implementation is pretty far from stabilization. Moreover, the difficulty highlighted here is not due to the presence of member constraints -- it's inherent to the design of the language. In other words, stabilizing member constraints does not actually cause us to accept anything that would make this problem any harder.

So I don't see this as a blocker to stabilization of member constraints; it is potentially a blocker to stablization of `impl trait` in let bindings.
Dylan-DPC-zz pushed a commit to Dylan-DPC-zz/rust that referenced this issue May 27, 2021
…raints-61997, r=jackh726

stabilize member constraints

Stabilizes the use of "member constraints" in solving `impl Trait` bindings. This is a step towards stabilizing a "MVP" of "named impl Trait".

# Member constraint stabilization report

| Info | |
| --- | --- |
| Tracking issue | [rust-lang#61997](rust-lang#61997) |
| Implementation history | [rust-lang#61775] |
| rustc-dev-guide coverage | [link](https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/member_constraints.html) |
| Complications | [rust-lang#61773] |

[rust-lang#61775]: rust-lang#61775
[rust-lang#61773]: rust-lang#61773

## Background

Member constraints are an extension to our region solver that was introduced to make async fn region solving tractable. There are used in situations like the following:

```rust
fn foo<'a, 'b>(...) -> impl Trait<'a, 'b> { .. }
```

The problem here is that every region R in the hidden type must be equal to *either* `'a` *or* `'b` (or `'static`). This cannot be expressed simply via 'outlives constriants' like `R: 'a`. Therefore, we introduce a 'member constraint' `R member of ['a, 'b]`.

These constraints were introduced in [rust-lang#61775]. At the time, we kept them feature gated and used them only for `impl Trait` return types that are derived from `async fn`. The intention, however, was always to support them in other contexts once we had time to gain more experience with them.

**In the time since their introduction, we have encountered no surprises or bugs due to these member constraints.** They are tested extensively as part of every async function that involves multiple unrelated lifetimes in its arguments.

## Tests

The behavior of member constraints is covered by the following tests:

* [`src/test/ui/async-await/multiple-lifetimes`](https://github.com/rust-lang/rust/tree/20e032e65007ff1376e8480c1fbdb0a5068028fa/src/test/ui/async-await/multiple-lifetimes) -- tests using the async await, which are mostly already stabilized
* [`src/test/ui/impl-trait/multiple-lifetimes.rs`](https://github.com/rust-lang/rust/blob/20e032e65007ff1376e8480c1fbdb0a5068028fa/src/test/ui/impl-trait/multiple-lifetimes.rs)
* [`src/test/ui/impl-trait/multiple-lifetimes/ordinary-bounds-unsuited.rs`](https://github.com/rust-lang/rust/blob/20e032e65007ff1376e8480c1fbdb0a5068028fa/src/test/ui/impl-trait/multiple-lifetimes/ordinary-bounds-unsuited.rs)
* [`src/test/ui/async-await/multiple-lifetimes/ret-impl-trait-fg.rs`](https://github.com/rust-lang/rust/blob/20e032e65007ff1376e8480c1fbdb0a5068028fa/src/test/ui/async-await/multiple-lifetimes/ret-impl-trait-fg.rs)
* [`src/test/ui/async-await/multiple-lifetimes/ret-impl-trait-one.rs`](https://github.com/rust-lang/rust/blob/20e032e65007ff1376e8480c1fbdb0a5068028fa/src/test/ui/async-await/multiple-lifetimes/ret-impl-trait-one.rs)

These tests cover a number of scenarios:

* `-> implTrait<'a, 'b>` with unrelated lifetimes `'a` and `'b`, as described above
* `async fn` that returns an `impl Trait` like the previous case, which desugars to a kind of "nested" impl trait like `impl Future<Output = impl Trait<'a, 'b>>`

## Potential concerns

There is a potential interaction with `impl Trait` on local variables, described in [rust-lang#61773]. The challenge is that if you have a program like:

```rust=
trait Foo<'_> { }
impl Foo<'_> for &u32 { }

fn bar() {
  let x: impl Foo<'_> = &44; // let's call the region variable for `'_` `'1`
}
```

then we would wind up with `'0 member of ['1, 'static]`, where `'0` is the region variable in the hidden type (`&'0 u32`) and `'1` is the region variable in the bounds `Foo<'1>`. This is tricky because both `'0` and `'1` are being inferred -- so making them equal may have other repercussions.

That said, `impl Trait` in bindings are not stable, and the implementation is pretty far from stabilization. Moreover, the difficulty highlighted here is not due to the presence of member constraints -- it's inherent to the design of the language. In other words, stabilizing member constraints does not actually cause us to accept anything that would make this problem any harder.

So I don't see this as a blocker to stabilization of member constraints; it is potentially a blocker to stablization of `impl trait` in let bindings.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
A-impl-trait Area: `impl Trait`. Universally / existentially quantified anonymous types with static dispatch. F-impl_trait_in_bindings `#![feature(impl_trait_in_bindings)]` F-member_constraints `#[feature(member_constraints)]` requires-nightly This issue requires a nightly compiler in some way. T-compiler Relevant to the compiler team, which will review and decide on the PR/issue. T-lang Relevant to the language team, which will review and decide on the PR/issue.
Projects
None yet
Development

No branches or pull requests

3 participants