Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

directly expose copy and copy_nonoverlapping intrinsics #81238

Merged
merged 2 commits into from
Feb 13, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
337 changes: 151 additions & 186 deletions library/core/src/intrinsics.rs
Original file line number Diff line number Diff line change
Expand Up @@ -1730,6 +1730,157 @@ extern "rust-intrinsic" {
/// Allocate at compile time. Should not be called at runtime.
#[rustc_const_unstable(feature = "const_heap", issue = "79597")]
pub fn const_allocate(size: usize, align: usize) -> *mut u8;

/// Copies `count * size_of::<T>()` bytes from `src` to `dst`. The source
/// and destination must *not* overlap.
///
/// For regions of memory which might overlap, use [`copy`] instead.
///
/// `copy_nonoverlapping` is semantically equivalent to C's [`memcpy`], but
/// with the argument order swapped.
///
/// [`memcpy`]: https://en.cppreference.com/w/c/string/byte/memcpy
///
/// # Safety
///
/// Behavior is undefined if any of the following conditions are violated:
///
/// * `src` must be [valid] for reads of `count * size_of::<T>()` bytes.
///
/// * `dst` must be [valid] for writes of `count * size_of::<T>()` bytes.
///
/// * Both `src` and `dst` must be properly aligned.
///
/// * The region of memory beginning at `src` with a size of `count *
/// size_of::<T>()` bytes must *not* overlap with the region of memory
/// beginning at `dst` with the same size.
///
/// Like [`read`], `copy_nonoverlapping` creates a bitwise copy of `T`, regardless of
/// whether `T` is [`Copy`]. If `T` is not [`Copy`], using *both* the values
/// in the region beginning at `*src` and the region beginning at `*dst` can
/// [violate memory safety][read-ownership].
///
/// Note that even if the effectively copied size (`count * size_of::<T>()`) is
/// `0`, the pointers must be non-NULL and properly aligned.
///
/// [`read`]: crate::ptr::read
/// [read-ownership]: crate::ptr::read#ownership-of-the-returned-value
/// [valid]: crate::ptr#safety
///
/// # Examples
///
/// Manually implement [`Vec::append`]:
///
/// ```
/// use std::ptr;
///
/// /// Moves all the elements of `src` into `dst`, leaving `src` empty.
/// fn append<T>(dst: &mut Vec<T>, src: &mut Vec<T>) {
/// let src_len = src.len();
/// let dst_len = dst.len();
///
/// // Ensure that `dst` has enough capacity to hold all of `src`.
/// dst.reserve(src_len);
///
/// unsafe {
/// // The call to offset is always safe because `Vec` will never
/// // allocate more than `isize::MAX` bytes.
/// let dst_ptr = dst.as_mut_ptr().offset(dst_len as isize);
/// let src_ptr = src.as_ptr();
///
/// // Truncate `src` without dropping its contents. We do this first,
/// // to avoid problems in case something further down panics.
/// src.set_len(0);
///
/// // The two regions cannot overlap because mutable references do
/// // not alias, and two different vectors cannot own the same
/// // memory.
/// ptr::copy_nonoverlapping(src_ptr, dst_ptr, src_len);
///
/// // Notify `dst` that it now holds the contents of `src`.
/// dst.set_len(dst_len + src_len);
/// }
/// }
///
/// let mut a = vec!['r'];
/// let mut b = vec!['u', 's', 't'];
///
/// append(&mut a, &mut b);
///
/// assert_eq!(a, &['r', 'u', 's', 't']);
/// assert!(b.is_empty());
/// ```
///
/// [`Vec::append`]: ../../std/vec/struct.Vec.html#method.append
#[doc(alias = "memcpy")]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_unstable(feature = "const_intrinsic_copy", issue = "80697")]
pub fn copy_nonoverlapping<T>(src: *const T, dst: *mut T, count: usize);

/// Copies `count * size_of::<T>()` bytes from `src` to `dst`. The source
/// and destination may overlap.
///
/// If the source and destination will *never* overlap,
/// [`copy_nonoverlapping`] can be used instead.
///
/// `copy` is semantically equivalent to C's [`memmove`], but with the argument
/// order swapped. Copying takes place as if the bytes were copied from `src`
/// to a temporary array and then copied from the array to `dst`.
///
/// [`memmove`]: https://en.cppreference.com/w/c/string/byte/memmove
///
/// # Safety
///
/// Behavior is undefined if any of the following conditions are violated:
///
/// * `src` must be [valid] for reads of `count * size_of::<T>()` bytes.
///
/// * `dst` must be [valid] for writes of `count * size_of::<T>()` bytes.
///
/// * Both `src` and `dst` must be properly aligned.
///
/// Like [`read`], `copy` creates a bitwise copy of `T`, regardless of
/// whether `T` is [`Copy`]. If `T` is not [`Copy`], using both the values
/// in the region beginning at `*src` and the region beginning at `*dst` can
/// [violate memory safety][read-ownership].
///
/// Note that even if the effectively copied size (`count * size_of::<T>()`) is
/// `0`, the pointers must be non-NULL and properly aligned.
///
/// [`read`]: crate::ptr::read
/// [read-ownership]: crate::ptr::read#ownership-of-the-returned-value
/// [valid]: crate::ptr#safety
///
/// # Examples
///
/// Efficiently create a Rust vector from an unsafe buffer:
///
/// ```
/// use std::ptr;
///
/// /// # Safety
/// ///
/// /// * `ptr` must be correctly aligned for its type and non-zero.
/// /// * `ptr` must be valid for reads of `elts` contiguous elements of type `T`.
/// /// * Those elements must not be used after calling this function unless `T: Copy`.
/// # #[allow(dead_code)]
/// unsafe fn from_buf_raw<T>(ptr: *const T, elts: usize) -> Vec<T> {
/// let mut dst = Vec::with_capacity(elts);
///
/// // SAFETY: Our precondition ensures the source is aligned and valid,
/// // and `Vec::with_capacity` ensures that we have usable space to write them.
/// ptr::copy(ptr, dst.as_mut_ptr(), elts);
///
/// // SAFETY: We created it with this much capacity earlier,
/// // and the previous `copy` has initialized these elements.
/// dst.set_len(elts);
/// dst
/// }
/// ```
#[doc(alias = "memmove")]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_unstable(feature = "const_intrinsic_copy", issue = "80697")]
pub fn copy<T>(src: *const T, dst: *mut T, count: usize);
}

// Some functions are defined here because they accidentally got made
Expand All @@ -1755,192 +1906,6 @@ pub(crate) fn is_nonoverlapping<T>(src: *const T, dst: *const T, count: usize) -
diff >= size
}

/// Copies `count * size_of::<T>()` bytes from `src` to `dst`. The source
/// and destination must *not* overlap.
///
/// For regions of memory which might overlap, use [`copy`] instead.
///
/// `copy_nonoverlapping` is semantically equivalent to C's [`memcpy`], but
/// with the argument order swapped.
///
/// [`memcpy`]: https://en.cppreference.com/w/c/string/byte/memcpy
///
/// # Safety
///
/// Behavior is undefined if any of the following conditions are violated:
///
/// * `src` must be [valid] for reads of `count * size_of::<T>()` bytes.
///
/// * `dst` must be [valid] for writes of `count * size_of::<T>()` bytes.
///
/// * Both `src` and `dst` must be properly aligned.
///
/// * The region of memory beginning at `src` with a size of `count *
/// size_of::<T>()` bytes must *not* overlap with the region of memory
/// beginning at `dst` with the same size.
///
/// Like [`read`], `copy_nonoverlapping` creates a bitwise copy of `T`, regardless of
/// whether `T` is [`Copy`]. If `T` is not [`Copy`], using *both* the values
/// in the region beginning at `*src` and the region beginning at `*dst` can
/// [violate memory safety][read-ownership].
///
/// Note that even if the effectively copied size (`count * size_of::<T>()`) is
/// `0`, the pointers must be non-NULL and properly aligned.
///
/// [`read`]: crate::ptr::read
/// [read-ownership]: crate::ptr::read#ownership-of-the-returned-value
/// [valid]: crate::ptr#safety
///
/// # Examples
///
/// Manually implement [`Vec::append`]:
///
/// ```
/// use std::ptr;
///
/// /// Moves all the elements of `src` into `dst`, leaving `src` empty.
/// fn append<T>(dst: &mut Vec<T>, src: &mut Vec<T>) {
/// let src_len = src.len();
/// let dst_len = dst.len();
///
/// // Ensure that `dst` has enough capacity to hold all of `src`.
/// dst.reserve(src_len);
///
/// unsafe {
/// // The call to offset is always safe because `Vec` will never
/// // allocate more than `isize::MAX` bytes.
/// let dst_ptr = dst.as_mut_ptr().offset(dst_len as isize);
/// let src_ptr = src.as_ptr();
///
/// // Truncate `src` without dropping its contents. We do this first,
/// // to avoid problems in case something further down panics.
/// src.set_len(0);
///
/// // The two regions cannot overlap because mutable references do
/// // not alias, and two different vectors cannot own the same
/// // memory.
/// ptr::copy_nonoverlapping(src_ptr, dst_ptr, src_len);
///
/// // Notify `dst` that it now holds the contents of `src`.
/// dst.set_len(dst_len + src_len);
/// }
/// }
///
/// let mut a = vec!['r'];
/// let mut b = vec!['u', 's', 't'];
///
/// append(&mut a, &mut b);
///
/// assert_eq!(a, &['r', 'u', 's', 't']);
/// assert!(b.is_empty());
/// ```
///
/// [`Vec::append`]: ../../std/vec/struct.Vec.html#method.append
#[doc(alias = "memcpy")]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_unstable(feature = "const_intrinsic_copy", issue = "80697")]
#[inline]
pub const unsafe fn copy_nonoverlapping<T>(src: *const T, dst: *mut T, count: usize) {
extern "rust-intrinsic" {
#[rustc_const_unstable(feature = "const_intrinsic_copy", issue = "80697")]
fn copy_nonoverlapping<T>(src: *const T, dst: *mut T, count: usize);
}

// FIXME: Perform these checks only at run time
/*if cfg!(debug_assertions)
&& !(is_aligned_and_not_null(src)
&& is_aligned_and_not_null(dst)
&& is_nonoverlapping(src, dst, count))
{
// Not panicking to keep codegen impact smaller.
abort();
}*/

// SAFETY: the safety contract for `copy_nonoverlapping` must be
// upheld by the caller.
unsafe { copy_nonoverlapping(src, dst, count) }
}

/// Copies `count * size_of::<T>()` bytes from `src` to `dst`. The source
/// and destination may overlap.
///
/// If the source and destination will *never* overlap,
/// [`copy_nonoverlapping`] can be used instead.
///
/// `copy` is semantically equivalent to C's [`memmove`], but with the argument
/// order swapped. Copying takes place as if the bytes were copied from `src`
/// to a temporary array and then copied from the array to `dst`.
///
/// [`memmove`]: https://en.cppreference.com/w/c/string/byte/memmove
///
/// # Safety
///
/// Behavior is undefined if any of the following conditions are violated:
///
/// * `src` must be [valid] for reads of `count * size_of::<T>()` bytes.
///
/// * `dst` must be [valid] for writes of `count * size_of::<T>()` bytes.
///
/// * Both `src` and `dst` must be properly aligned.
///
/// Like [`read`], `copy` creates a bitwise copy of `T`, regardless of
/// whether `T` is [`Copy`]. If `T` is not [`Copy`], using both the values
/// in the region beginning at `*src` and the region beginning at `*dst` can
/// [violate memory safety][read-ownership].
///
/// Note that even if the effectively copied size (`count * size_of::<T>()`) is
/// `0`, the pointers must be non-NULL and properly aligned.
///
/// [`read`]: crate::ptr::read
/// [read-ownership]: crate::ptr::read#ownership-of-the-returned-value
/// [valid]: crate::ptr#safety
///
/// # Examples
///
/// Efficiently create a Rust vector from an unsafe buffer:
///
/// ```
/// use std::ptr;
///
/// /// # Safety
/// ///
/// /// * `ptr` must be correctly aligned for its type and non-zero.
/// /// * `ptr` must be valid for reads of `elts` contiguous elements of type `T`.
/// /// * Those elements must not be used after calling this function unless `T: Copy`.
/// # #[allow(dead_code)]
/// unsafe fn from_buf_raw<T>(ptr: *const T, elts: usize) -> Vec<T> {
/// let mut dst = Vec::with_capacity(elts);
///
/// // SAFETY: Our precondition ensures the source is aligned and valid,
/// // and `Vec::with_capacity` ensures that we have usable space to write them.
/// ptr::copy(ptr, dst.as_mut_ptr(), elts);
///
/// // SAFETY: We created it with this much capacity earlier,
/// // and the previous `copy` has initialized these elements.
/// dst.set_len(elts);
/// dst
/// }
/// ```
#[doc(alias = "memmove")]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_unstable(feature = "const_intrinsic_copy", issue = "80697")]
#[inline]
pub const unsafe fn copy<T>(src: *const T, dst: *mut T, count: usize) {
extern "rust-intrinsic" {
#[rustc_const_unstable(feature = "const_intrinsic_copy", issue = "80697")]
fn copy<T>(src: *const T, dst: *mut T, count: usize);
}

// FIXME: Perform these checks only at run time
/*if cfg!(debug_assertions) && !(is_aligned_and_not_null(src) && is_aligned_and_not_null(dst)) {
// Not panicking to keep codegen impact smaller.
abort();
}*/

// SAFETY: the safety contract for `copy` must be upheld by the caller.
unsafe { copy(src, dst, count) }
}

/// Sets `count * size_of::<T>()` bytes of memory starting at `dst` to
/// `val`.
///
Expand Down
7 changes: 1 addition & 6 deletions library/core/src/ptr/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -881,17 +881,12 @@ pub const unsafe fn read_unaligned<T>(src: *const T) -> T {
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub unsafe fn write<T>(dst: *mut T, src: T) {
// We are calling the intrinsics directly to avoid function calls in the generated code
// as `intrinsics::copy_nonoverlapping` is a wrapper function.
extern "rust-intrinsic" {
fn copy_nonoverlapping<T>(src: *const T, dst: *mut T, count: usize);
}

// SAFETY: the caller must guarantee that `dst` is valid for writes.
// `dst` cannot overlap `src` because the caller has mutable access
// to `dst` while `src` is owned by this function.
unsafe {
copy_nonoverlapping(&src as *const T, dst, 1);
// We are calling the intrinsic directly to avoid function calls in the generated code.
intrinsics::forget(src);
}
}
Expand Down
Loading