Skip to content

Commit

Permalink
docs: maths: minor improvements
Browse files Browse the repository at this point in the history
  • Loading branch information
sahithyandev committed Nov 6, 2024
1 parent 271f288 commit ac1a2b0
Show file tree
Hide file tree
Showing 3 changed files with 33 additions and 26 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -23,8 +23,10 @@ $f(a)<u<f(b)$: $\exists c \in (a,b)$ such that $f(c)=u$.
:::note[Proof Hint]

- Define $g(x)=f(x)-u$
- Define $A=\{ x \in [a,b) \,|\,g(x)\gt 0 \}$
- Show that $\sup A$ ($=c$) exists. Assume and contradict these cases:
- Start with $f(b)\lt u \lt f(a)$
- Define $A=\{ x \in [a,b] \,|\,g(x)\gt 0 \}$
- Show that $\sup A$ ($=c$) exists.
- Use the continuity definition. Assume and contradict these cases:
- $c=a$ (use $2\epsilon = g(a)$)
- $c=b$ (use $2\epsilon = -g(b)$)
- $c\in(a,b)$ then contradict:
Expand Down
5 changes: 3 additions & 2 deletions src/content/docs/maths/real-analysis/32-uniformly-cauchy.md
Original file line number Diff line number Diff line change
Expand Up @@ -17,10 +17,11 @@ u_n(x)-u_m(x)
\rvert \lt \epsilon
```

If $u_n(x)$ is a sequence of real-valued functions, then:
If $u_n(x)$ is a sequence of real-valued functions, then: $ $

```math
u_n(x)\text{ converges uniformly} \iff
u_n(x)\text{ converges uniformly}
\iff
u_n(x)\text{ is uniformly Cauchy}
```

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -21,17 +21,6 @@ Suppose $f:(a,b]\to\mathbb{R}$ is integrable on $[c,b]\;\forall c\in (a,b)$.
Can be similarly defined on the other endpoint. The above integral converges
**iff** the limit exists and finite. Otherwise diverges.

#### Examples

```math
\int_0^1 \frac{1}{x^p}\,\text{d}x =
\lim_\limits{\epsilon \to 0^+}
\int_\epsilon^1 \frac{1}{x^p}\,\text{d}x
```

The above integral converges (to $\frac{1}{p-1}$) **iff** $0 \lt p \lt 1$. When
$p\ge 1$, it diverges to $\infty$.

### Type 2

A function defined on unbounded interval (including $\infty$). $ $
Expand All @@ -45,17 +34,6 @@ Suppose $f:[a,\infty)\to\mathbb{R}$ is integrable on $[a,r] \forall r > a$.
Can be similarly defined on the other endpoint. The above integral converges
**iff** the limit exists and finite. Otherwise diverges.

#### Examples

```math
\int_1^\infty \frac{1}{x^p}\,\text{d}x =
\lim_\limits{r \to \infty}
\int_1^r \frac{1}{x^p}\,\text{d}x
```

The above integral converges (to $\frac{1}{p-1}$) **iff** $p \gt 1$. When
$0 \lt p \le 1$, it diverges to $\infty$.

### Type 3

A function that is undefined at finite number of points. The integral can be
Expand All @@ -79,3 +57,29 @@ Convergence of improper integrals is similar to the convergence of
\implies
\int_a^b f \;\text{converges}
```

## Common integrals

```math
\int_0^1 \frac{1}{x^p}\,\text{d}x
\;\;\;
\;\;\;
\;\;\;
\int_1^\infty \frac{1}{x^p}\,\text{d}x
```

The above integrals converge **iff** $p$ is in the integrating (open) interval.
Converges to $\frac{1}{p-1}$ in that case.

```math
\int_0^1 \frac{\sin^2 x}{x^2}\,\text{d}x
\;\;\;
\;\;\;
\;\;\;
\int_1^\infty \frac{\sin^2 x}{x^2}\,\text{d}x
```

Both of the above integrals converges. Direct comparison test can be used.

- For the 1st integral, $\sqrt{x^{-1}}$ can be used
- For the 2nd integral, $x^{-2}$ can be used

0 comments on commit ac1a2b0

Please sign in to comment.