This is a subset of batbelt, with only the most used features, packed in a tiny file, and Python 2.7/3.3 compatible.
So, while you can pip install minibelt, you may just drop it in your project and forget about it.
It's under zlib licence.
You had a get() method on dict, but not on lists or tuple. Now you do
>>> lst = range(10) >>> get(lst, 1, default='whatever_you_want') 1 >>> get(lst, 100, default='whatever_you_want') 'whatever_you_want'
Plus, you can chain look ups :
This:
try: res = data['key'][0]['other key'][1] except (KeyError, IndexError): res = "value"
Becomes:
get(data, 'key', 0, 'other key', 1, default="value")
And for attributes...
devise = attr(car, 'insurance', 'expiration_date', 'timezone')
You can also get values at indices on any iterable, including generators :
>>> iget(xrange(10), 0) 0 >>> iget(xrange(10), 5) 5 >>> iget(xrange(10), 10000, default='wololo') u'wololo'
Iteration by chunk or with a sliding window:
>>> l = range(10) >>> for chunk in chunks(l, 3): ... print list(chunk) ... [0, 1, 2] [3, 4, 5] [6, 7, 8] [9] >>> for slide in window(l, 3): ... print list(slide) ... [0, 1, 2] [1, 2, 3] [2, 3, 4] [3, 4, 5] [4, 5, 6] [5, 6, 7] [6, 7, 8] [7, 8, 9]
Returns a generator that lazily yield the items and deals with up to hundred of levels of nesting (~800 on my machine, and you can control it with sys.setrecursionlimit)
a = [] for i in xrange(10): a = [a, i] print(a) [[[[[[[[[[[], 0], 1], 2], 3], 4], 5], 6], 7], 8], 9] print(list(flatten(a))) [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
It works with most iterables, even of inifinite or unknown size.
Slow but useful data structure:
>>> for x in sset((3, 2, 2, 2, 1, 2)): ... print x ... 3 2 1
I wish '+'' was overloaded for dicts:
>>> dmerge({"a": 1, "b": 2}, {"b": 2, "c": 3}) {'a': 1, 'c': 3, 'b': 2}
Sometimes you do not want to simply overwrite the values inside the original dict, but merge them in custom fashion:
>>> def my_merge(v1, v2): ... if isinstance(v1, dict) and isinstance(v2, dict): ... return dmerge(v1, v2) ... return v2 >>> dmerge({"a": 1, "b": {'ok': 5}}, {"b": {'ko': 5 }, "c": 3}, my_merge) {'a': 1, 'c': 3, 'b': {'ko': 5, 'ok': 5}}
And for lazy people like me
>>> subdict({'a': 1, 'b': 2, 'c': 3}, include=('a', 'b')) {'a': 1, 'b': 2} >>> subdict({'a': 1, 'b': 2, 'c': 3}, exclude=('c',)) {'a': 1, 'b': 2}
Which is quite nice when you want a dict of some local variables (like in web framework functions returning responses such as Django, Flask or Bottle)
>>> def test(): ... a, b, c, d, e = range(5) ... return subdict(locals(), exclude=('d',)) ... >>> test() {'a': 0, 'c': 2, 'b': 1, 'e': 4}
This works with any indexable, not just dicts.
>>> normalize(u"Hélo Whorde") 'Helo Whorde'
>>> slugify(u"Hélo Whorde") helo-whorde
You get better slugification if you install the unidecode lib, but it's optional. You can specify separator if you don't like - or call directly normalize() (the underlying function) if you wish more control.
JSON helpers that handle date/time
>>> import datetime >>> json_dumps({'test': datetime.datetime(2000, 1, 1, 1, 1, 1)}) '{"test": "2000-01-01 01:01:01.000000"}' >>> json_dumps({'test': datetime.date(2000, 1, 1)}) '{"test": "2000-01-01"}' >>> json_dumps({'test': datetime.time(1, 1, 1)}) '{"test": "01:01:01.000000"}' >>> json_dumps({'test': datetime.timedelta(1, 1)}) '{"test": "timedelta(seconds=\'86401.0\')"}' >>> json_dumps({u'test': datetime.timedelta(1, 1), u'a': [1, 2]}) '{"test": "timedelta(seconds=\'86401.0\')", "a": [1, 2]}' >>> json_loads('{"test": "2000-01-01 01:01:01.000000"}') {u'test': datetime.datetime(2000, 1, 1, 1, 1, 1)} >>> json_loads('{"test": "2000-01-01"}') {u'test': datetime.date(2000, 1, 1)} >>> json_loads('{"test": "01:01:01.000000"}') {u'test': datetime.time(1, 1, 1)} >>> json_loads('{"test": "timedelta(seconds=\'86401.0\')"}') {u'test': datetime.timedelta(1, 1)} >>> json_loads('{"test": "timedelta(seconds=\'86401.0\')", "a": [1, 2]}') {u'test': datetime.timedelta(1, 1), u'a': [1, 2]}
Write anything in one row to a file
>>> s = '/tmp/test' >>> write(s, 'test', 'é', 1, ['fdjskl']) >>> print open(s).read() test é 1 ['fdjskl']
It will attempt decoding / encoding and casting automatically each value to a string.
This is an utility function : its slow and doesn't consider edge cases, but allow to do just what you want most of the time in one line.
You can optionally pass :
- mode : among 'a', 'w', which default to 'w'. Binary mode is forced.
- encoding : which default to utf8 and will condition decoding AND encoding
- errors : what to do when en encoding error occurs : 'replace' by default,
- which replace faulty caracters with '?'
You can pass string or unicode as *args, but if you pass strings, make sure you pass them with the same encoding you wish to write to the file.
__import__ is weird. Let's abstract that
YourClass = import_from_path('foo.bar.YourClass') obj = YourClass()
Accepts shell variables and relative paths :
add_to_pythonpath("~/..")
You can (and probably wants) specify a starting point if you pass a relative path. The default starting point is the result is os.getcwd() while you probably wants the directory containing you script. To to so, pass __file__:
add_to_pythonpath("../..", starting_point=__file__)
starting_point can be a file path (basename will be stripped) or a directory name. It will be from there that the relative path will be calculated.
You can also choose where in the sys.path list your path will be added by passing insertion_index, which default to after the last existing item.
datetime.fromtimestamp exists but not the other away around, and it's not likely to change anytime soon (see: http://bugs.python.org/issue2736). In the meantime:
>>> from datetime import datetime >>> to_timestamp(datetime(2000, 1, 1, 2, 1, 1)) 946692061 >>> datetime.fromtimestamp(946688461) # PYTHON, Y U NO HAZ TO_TIMESTAMP ? datetime.datetime(2000, 1, 1, 2, 1, 1)
skip_duplicates returns a generator that will yield all objects from an iterable, skipping duplicates and preserving order
>>> list(skip_duplicates([1, 2, 3, 4, 4, 2, 1, 3 , 4])) [1, 2, 3, 4]
Duplicates are identified using the key function to calculate a unique fingerprint. This does not use natural equality, but the result use a set() to remove duplicates, so defining __eq__ on your objects would have no effect.
By default the fingerprint is the object itself, which ensure the functions works as-is with iterable of primitives such as int, str or tuple.
The return value of key MUST be hashable, which means for non hashable objects such as dict, set or list, you need to specify a function that returns a hashable fingerprint
>>> list(skip_duplicates(([], [], (), [1, 2], (1, 2)), lambda x: tuple(x))) [[], [1, 2]] >>> list(skip_duplicates(([], [], (), [1, 2], (1, 2)), lambda x: (type(x), tuple(x)))) [[], (), [1, 2], (1, 2)]