Skip to content

Commit

Permalink
Add release notes for 0.15.0
Browse files Browse the repository at this point in the history
  • Loading branch information
sebp committed Mar 20, 2021
1 parent b898282 commit 66deb82
Showing 1 changed file with 65 additions and 0 deletions.
65 changes: 65 additions & 0 deletions doc/release_notes.rst
Original file line number Diff line number Diff line change
@@ -1,6 +1,71 @@
Release Notes
=============

scikit-survival 0.15.0 (2021-03-20)
-----------------------------------

This release adds support for scikit-learn 0.24 and Python 3.9.
scikit-survival now requires at least pandas 0.25 and scikit-learn 0.24.
Moreover, if :class:`sksurv.ensemble.GradientBoostingSurvivalAnalysis`.
or :class:`sksurv.ensemble.ComponentwiseGradientBoostingSurvivalAnalysis`
are fit with ``loss='coxph'``, `predict_cumulative_hazard_function` and
`predict_survival_function` are now available.
:func:`sksurv.metrics.cumulative_dynamic_auc` now supports evaluating
time-dependent predictions, for instance for a :class:`sksurv.ensemble.RandomSurvivalForest`
as illustrated in the
:ref:`User Guide </user_guide/evaluating-survival-models.ipynb#Using-Time-dependent-Risk-Scores>`.

Bug fixes
^^^^^^^^^
- Allow passing pandas data frames to all ``fit`` and ``predict`` methods (#148).
- Allow sparse matrices to be passed to
:meth:`sksurv.ensemble.GradientBoostingSurvivalAnalysis.predict`.
- Fix example in user guide using GridSearchCV to determine alphas for CoxnetSurvivalAnalysis (#186).

Enhancements
^^^^^^^^^^^^
- Add score method to :class:`sksurv.meta.Stacking`,
:class:`sksurv.meta.EnsembleSelection`, and
:class:`sksurv.meta.EnsembleSelectionRegressor` (#151).
- Add support for `predict_cumulative_hazard_function` and
`predict_survival_function` to :class:`sksurv.ensemble.GradientBoostingSurvivalAnalysis`.
and :class:`sksurv.ensemble.ComponentwiseGradientBoostingSurvivalAnalysis`
if model was fit with ``loss='coxph'``.
- Add support for time-dependent predictions to :func:`sksurv.metrics.cumulative_dynamic_auc`
See the :ref:`User Guide </user_guide/evaluating-survival-models.ipynb#Using-Time-dependent-Risk-Scores>`
for an example (#134).

Backwards incompatible changes
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- The score method of :class:`sksurv.linear_model.IPCRidge`,
:class:`sksurv.svm.FastSurvivalSVM`, and :class:`sksurv.svm.FastKernelSurvivalSVM`
(if ``rank_ratio`` is smaller than 1) now converts predictions on log(time) scale
to risk scores prior to computing the concordance index.
- Support for cvxpy and cvxopt solver in :class:`sksurv.svm.MinlipSurvivalAnalysis`
and :class:`sksurv.svm.HingeLossSurvivalSVM` has been dropped. The default solver
is now ECOS, which was used by cvxpy (the previous default) internally. Therefore,
results should be identical.
- Dropped the ``presort`` argument from :class:`sksurv.tree.SurvivalTree`
and :class:`sksurv.ensemble.GradientBoostingSurvivalAnalysis`.
- The ``X_idx_sorted`` argument in :meth:`sksurv.tree.SurvivalTree.fit`
has been deprecated in scikit-learn 0.24 and has no effect now.
- `predict_cumulative_hazard_function` and
`predict_survival_function` of :class:`sksurv.ensemble.RandomSurvivalForest`
and :class:`sksurv.tree.SurvivalTree` now return an array of
:class:`sksurv.functions.StepFunction` objects by default.
Use ``return_array=True`` to get the old behavior.
- Support for Python 3.6 has been dropped.
- Increase minimum supported versions of dependencies. We now require:

+--------------+-----------------+
| Package | Minimum Version |
+==============+=================+
| Pandas | 0.25.0 |
+--------------+-----------------+
| scikit-learn | 0.24.0 |
+--------------+-----------------+


scikit-survival 0.14.0 (2020-10-07)
-----------------------------------

Expand Down

0 comments on commit 66deb82

Please sign in to comment.