Generates multi-instrument symbolic music (MIDI), based on user-provided emotions from valence-arousal plane. In simpler words, it can generate happy (positive valence, positive arousal), calm (positive valence, negative arousal), angry (negative valence, positive arousal) or sad (negative valence, negative arousal) music.
Source code for our paper "Symbolic music generation conditioned on continuous-valued emotions", Serkan Sulun, Matthew E. P. Davies, Paula Viana, 2022. https://ieeexplore.ieee.org/document/9762257
To cite:
S. Sulun, M. E. P. Davies and P. Viana, "Symbolic music generation conditioned on continuous-valued emotions," in IEEE Access, doi: 10.1109/ACCESS.2022.3169744.
Required Python libraries: Numpy, Pytorch, Pandas, pretty_midi, Pypianoroll, tqdm, Spotipy, Pytables. Or run: pip install -r requirements.txt
To create the Lakh-Spotify dataset:
-
Go to the
src/create_dataset
folder -
Download the datasets:
MSD summary file http://labrosa.ee.columbia.edu/millionsong/sites/default/files/AdditionalFiles/msd_summary_file.h5
Echonest mapping dataset
ftp://ftp.acousticbrainz.org/pub/acousticbrainz/acousticbrainz-labs/download/msdrosetta/millionsongdataset_echonest.tar.bz2
Alternatively: https://drive.google.com/file/d/17Exfxjtq7bI9EKtEZlOrBCkx8RBx7h77/view?usp=sharing
Lakh-MSD matching scores file http://hog.ee.columbia.edu/craffel/lmd/match_scores.json
-
Extract when necessary, and place all inside folder
./data_files
-
Get Spotify client ID and client secret: https://developer.spotify.com/dashboard/applications Then, fill in the variables "client_id" and "client_secret" in
src/create_dataset/utils.py
-
Run
run.py
.
To preprocess and create the training dataset:
- Go to the
src/data
folder and runpreprocess_pianorolls.py
To generate MIDI using pretrained models:
-
Download model(s) from the following link: https://drive.google.com/drive/folders/1R5-HaXmNzXBAhGq1idrDF-YEKkZm5C8C?usp=sharing
-
Extract into the folder
output
-
Go to
src
folder and rungenerate.py
with appropriate arguments. e.g:python generate.py --model_dir continuous_concat --conditioning continuous_concat --valence -0.8, -0.8 0.8 0.8 --arousal -0.8 -0.8 0.8 0.8
To train:
- Go to
src
folder and runtrain.py
with appropriate arguments. e.g:python train.py --conditioning continuous_concat
There are 4 different conditioning modes:
none
: No conditioning, vanilla model.
discrete_token
: Conditioning using discrete tokens, i.e. control tokens.
continuous_token
: Conditioning using continuous values embedded as vectors, then prepended to the other embedded tokens in sequence dimension.
continuous_concat
: Conditioning using continuous values embedded as vectors, then concatenated to all other embedded tokens in channel dimension.
See config.py
for all options.