"Context-based Trit-Plane Coding for Progressive Image Compression," In CVPR 2023.
Seungmin Jeon, Kwang Pyo Choi, Youngo Park and Chang-Su Kim.
PyTorch-Based Official Code for CTC.
- python 3.9
- pytorch 1.11.0 (cudatoolkit 11.0)
- torchvision 0.12.0
- CompressAI 1.2.1
- Ubuntu 18.04 recommended
Download pre-trained model parameters on the root path.
$ python codec.py --mode enc --save-path {path} --input-file {input image file} --cuda
"--cuda" is optional.
For exasmple, command below
$ python codec.py --mode enc --save-path results --input-file sample.png --cuda
generates binary files in "results/bits".
$ python codec.py --mode dec --save-path {path same with enc} --input-file {original image file} --recon-level {int} --cuda
"--input-file" is optional, used to calculate PSNR.
For example, command below
$ python codec.py --mode dec --save-path results --input-file sample.png --recon-level 140 --cuda
prints metrics and saves reconstructed an image "results/recon/q0140.png".
Please cite the following paper when you use this repository. Thanks!
@inproceedings{2023_CVPR_jeon,
author = {Jeon, Seungmin and Choi, Kwang Pyo and Park, Youngo and Kim, Chang-Su},
title = {Context-Based Trit-Plane Coding for Progressive Image Compression},
booktitle = {{Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition}},
year = {2023}
}
See MIT License