Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

IFU mode improvements, continued #890

Merged
merged 10 commits into from
Sep 12, 2024
6 changes: 6 additions & 0 deletions webbpsf/constants.py
Original file line number Diff line number Diff line change
Expand Up @@ -401,3 +401,9 @@
# This is a rough approximation of a detector-position-dependent phenomenon
MIRI_CRUCIFORM_INNER_RADIUS_PIX = 12
MIRI_CRUCIFORM_RADIAL_SCALEFACTOR = 0.005 # Brightness factor for the diffuse circular halo

# Parameters for adjusting models of IFU PSFs relative to regular imaging PSFs
INSTRUMENT_IFU_BROADENING_PARAMETERS = {
'NIRSPEC': {'sigma': 0.05},
'MIRI': {'sigma': 0.05},
}
133 changes: 132 additions & 1 deletion webbpsf/detectors.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,8 @@
from astropy.convolution import convolve
from astropy.convolution.kernels import CustomKernel
from astropy.io import fits
from astropy import units as u
from astropy.modeling.functional_models import Gaussian1D, GAUSSIAN_SIGMA_TO_FWHM

import webbpsf
from webbpsf import constants, utils
Expand Down Expand Up @@ -195,15 +197,18 @@ def apply_detector_ipc(psf_hdulist, extname='DET_DIST'):

out_ipc_0 = convolve(psf_hdulist[extname].data, ipckernel)
out_ipc = convolve(out_ipc_0, ppckernel)
webbpsf.webbpsf_core._log.info(f'ext {extname}: Added IPC and PPC models for {inst}')
elif inst.upper() == 'NIRISS':
# the NIRISS code provided by Kevin Volk was developed for a different convolution function
if oversample != 1:
kernel = oversample_ipc_model(kernel, oversample)
out_ipc = signal.fftconvolve(psf_hdulist[extname].data, kernel, mode='same')
webbpsf.webbpsf_core._log.info(f'ext {extname}: Added IPC model for {inst}')
else:
if oversample != 1:
kernel = oversample_ipc_model(kernel, oversample)
out_ipc = convolve(psf_hdulist[extname].data, kernel)
webbpsf.webbpsf_core._log.info(f'ext {extname}: Added IPC model for {inst}')

# apply kernel to DET_DIST
psf_hdulist[extname].data = out_ipc
Expand All @@ -214,7 +219,7 @@ def apply_detector_ipc(psf_hdulist, extname='DET_DIST'):
psf_hdulist[extname].header.add_history('Applied detector interpixel capacitance (IPC) model')

else:
webbpsf.webbpsf_core._log.info('IPC corrections are not implemented yet for {}'.format(inst))
webbpsf.webbpsf_core._log.info('IPC model not implemented yet for {}'.format(inst))
psf_hdulist[extname].header['IPCINST'] = (inst, 'No IPC correction applied')

return psf_hdulist
Expand Down Expand Up @@ -542,3 +547,129 @@ def _show_miri_cruciform_kernel(filt, npix=101, oversample=4, detector_position=
ax.plot(0, 0, marker='+', color='yellow')

matplotlib.pyplot.colorbar(mappable=ax.images[0])

# Functions for applying IFU optics systematics models
#
# Note, thes are is not actually a "Detector" effect, but this file is a
obi-wan76 marked this conversation as resolved.
Show resolved Hide resolved
# convenient place to locate that code, because similar to the detector effects
# it's implemented as a post-processing modification on the output PSF array.


def apply_miri_ifu_broadening(hdulist, options, slice_width=0.196):
""" Apply a simple empirical model of MIRI IFU broadening to better match observed PSFs

Parameters
-----------
hdulist : astropy.io.fits.HDUList
PSF calculation output data structure. Will be modified.
options : dict
Options dict for setting optional behaviors
slice_width : float
MIRI MRS IFU slice width (across the slice). See MIRI._IFU_pixelscale in webbpsf_core.py

"""
# First, check an optional flag to see whether or not to include this effect.
# User can set the option to None to disable this step.
model_type = options.get('ifu_broadening', 'empirical')

if model_type is None or model_type.lower() == 'none':
return hdulist

ext = 1 # Apply this effect to the OVERDIST extension, which at this point in the code will be ext 1

webbpsf.webbpsf_core._log.info(f'Applying MIRI IFU broadening model: {model_type}')
hdulist[ext].header.add_history(f"Added broadening model for IFU PSFs: {model_type}")

hdulist[ext].header['IFUBROAD'] = (True, "IFU PSF broadening model applied")
hdulist[ext].header['IFUBTYPE'] = (model_type, "IFU PSF broadening model type")

if model_type.lower() == 'gaussian':
# Very simple model just as a Gaussian convolution kernel
sigma = constants.INSTRUMENT_IFU_BROADENING_PARAMETERS['MIRI']['sigma']
hdulist[ext].header['IFUBSIGM'] = (model_type, "[arcsec] IFU PSF broadening Gaussian sigma")
obi-wan76 marked this conversation as resolved.
Show resolved Hide resolved
out = scipy.ndimage.gaussian_filter(hdulist[ext].data, sigma / hdulist[ext].header['PIXELSCL'])
elif model_type.lower() == 'empirical':
# Model based on empirical PSF properties, Argryiou et al.
pixelscl = float(hdulist[ext].header['PIXELSCL'])
wavelen = float(hdulist[ext].header['WAVELEN'])

beta_width = slice_width / pixelscl
alpha_width = _miri_mrs_analytical_sigma_alpha_broadening(wavelen * 1e6) / pixelscl
out = _miri_mrs_empirical_broadening(psf_model=hdulist[ext].data, alpha_width=alpha_width, beta_width=beta_width)

hdulist[ext].data = out

return hdulist


def apply_nirspec_ifu_broadening(hdulist, options):
""" Apply a simple empirical model of NIRSpec IFU broadening to better match observed PSFs

"""
# First, check an optional flag to see whether or not to include this effect
model_type = options.get('ifu_broadening', 'gaussian')
if model_type is None or model_type.lower() == 'none':
return hdulist

ext = 1 # Apply this effect to the OVERDIST extension, which at this point in the code will be ext 1

webbpsf.webbpsf_core._log.info(f'Applying NRS IFU broadening model ({model_type}) to '+
f'ext {hdulist[ext].header["EXTNAME"]}')

hdulist[ext].header['IFUBROAD'] = (True, "IFU PSF broadening model applied")
hdulist[ext].header['IFUBTYPE'] = (model_type, "IFU PSF broadening model type")
hdulist[ext].header.add_history(f"Added broadening model for IFU PSFs: {model_type}")

if model_type.lower() == 'gaussian':
sigma = constants.INSTRUMENT_IFU_BROADENING_PARAMETERS['NIRSPEC']['sigma']
# currently sigma= 50 mas, half a NIRSpec IFU spaxel. Approximate and loose estimate
hdulist[ext].header['IFUBSIGM'] = (model_type, "[arcsec] IFU PSF broadening Gaussian sigma")
obi-wan76 marked this conversation as resolved.
Show resolved Hide resolved
out = scipy.ndimage.gaussian_filter(hdulist[ext].data, sigma / hdulist[ext].header['PIXELSCL'])

hdulist[ext].data = out

return hdulist


def _miri_mrs_analytical_sigma_alpha_broadening(wavelength):
"""
Calculate the Gaussian scale of the kernel that broadens the diffraction limited
FWHM to the empirically measured FWHM.

Parameters
----------
wavelength : float or ndarray
wavelength in MICRONS
"""
empirical_fwhm = 0.033 * wavelength + 0.106 # Law+2023
diffraction_fwhm = astropy.coordinates.Angle(1.025*wavelength*1E-6/constants.JWST_CIRCUMSCRIBED_DIAMETER, u.radian).to_value(u.arcsec)

sigma_emp = empirical_fwhm/GAUSSIAN_SIGMA_TO_FWHM
sigma_diffr = diffraction_fwhm/GAUSSIAN_SIGMA_TO_FWHM
return np.sqrt(sigma_emp**2 - sigma_diffr**2) # return kernel width in arcsec


def _miri_mrs_empirical_broadening(psf_model, alpha_width, beta_width):
"""
Perform the broadening of a psf model in alpha and beta

Parameters
-----------
psf_model : ndarray
webbpsf output results, eitehr monochromatic model or datacube
alpha_width : float
gaussian convolution kernel in pixels, None if no broadening should be performed
beta_width : float
slice width in pixels
"""
kernel_beta = astropy.convolution.Box1DKernel(beta_width)

# TODO: extend algorithm to handle the datacube case

if alpha_width is None:
psf_model_alpha_beta = np.apply_along_axis(lambda m: convolve(m, kernel_beta), axis=0, arr=psf_model)
else:
kernel_alpha = astropy.convolution.Gaussian1DKernel(stddev=alpha_width)
psf_model_alpha = np.apply_along_axis(lambda m: convolve(m, kernel_alpha), axis=1, arr=psf_model)
psf_model_alpha_beta = np.apply_along_axis(lambda m: convolve(m, kernel_beta), axis=0, arr=psf_model_alpha)
return psf_model_alpha_beta
13 changes: 11 additions & 2 deletions webbpsf/match_data.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,11 @@ def setup_sim_to_match_file(filename_or_HDUList, verbose=True, plot=False, choic

inst = webbpsf.instrument(header['INSTRUME'])

if inst.name == 'MIRI' and header['FILTER'] == 'P750L':
if inst.name == 'MIRI' and header['EXP_TYPE'] == 'MIR_MRS':
print("MIRI MRS exposure detected; configuring for IFU mode")
inst.mode = 'IFU'
# There is no FILTER keyword for MRS, so don't set filter to anything.
elif inst.name == 'MIRI' and header['FILTER'] == 'P750L':
# webbpsf doesn't model the MIRI LRS prism spectral response
print('Please note, webbpsf does not currently model the LRS spectral response. Setting filter to F770W instead.')
inst.filter = 'F770W'
Expand Down Expand Up @@ -68,7 +72,12 @@ def setup_sim_to_match_file(filename_or_HDUList, verbose=True, plot=False, choic
inst.pupil_mask = header['PUPIL']

elif inst.name == 'MIRI':
if inst.filter in ['F1065C', 'F1140C', 'F1550C']:
if header['EXP_TYPE'] == 'MIR_MRS':
ch = header['CHANNEL']
band_lookup = {'SHORT': 'A', 'MEDIUM': 'B', 'LONG': 'C'}
inst.band = str(ch) + band_lookup[header['BAND']]

elif inst.filter in ['F1065C', 'F1140C', 'F1550C']:
inst.image_mask = 'FQPM' + inst.filter[1:5]
elif inst.filter == 'F2300C':
inst.image_mask = 'LYOT2300'
Expand Down
27 changes: 27 additions & 0 deletions webbpsf/tests/test_miri.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@
import numpy as np
import pysiaf

import webbpsf
from .. import webbpsf_core
from .test_webbpsf import do_test_set_position_from_siaf, do_test_source_offset, generic_output_test

Expand Down Expand Up @@ -224,3 +225,29 @@ def test_IFU_wavelengths():
# and test we can specify a reduced wavelength sampling:
for n in (10, 100):
assert len(miri.get_IFU_wavelengths(n)) == n


def test_miri_ifu_broadening():
""" Basic functional test for the code that adjusts PSF outputs to better match empirical IFU PSFs
"""

miri = webbpsf_core.MIRI()
miri.mode = 'IFU'
psf = miri.calc_psf(monochromatic=2.8e-6, fov_pixels=10)

fwhm_oversamp = webbpsf.measure_fwhm(psf, ext='OVERSAMP')
fwhm_overdist = webbpsf.measure_fwhm(psf, ext='OVERDIST')
assert fwhm_overdist > fwhm_oversamp, "IFU broadening model should increase the FWHM for the distorted extensions"

fwhm_detsamp = webbpsf.measure_fwhm(psf, ext='DET_SAMP')
fwhm_detdist = webbpsf.measure_fwhm(psf, ext='DET_DIST')
assert fwhm_overdist > fwhm_oversamp, "IFU broadening model should increase the FWHM for the distorted extensions"

# Now test that we can also optionally turn off that effect
miri.options['ifu_broadening'] = None
psf_nb = miri.calc_psf(monochromatic=2.8e-6, fov_pixels=10)

fwhm_oversamp = webbpsf.measure_fwhm(psf_nb, ext='OVERSAMP')
fwhm_overdist = webbpsf.measure_fwhm(psf_nb, ext='OVERDIST')
# The PSF will still be a little broader in this case due to the IPC model, but not by a lot..
assert fwhm_oversamp < fwhm_overdist <= 1.1 * fwhm_oversamp, "IFU broadening model should be disabled for this test case"
25 changes: 25 additions & 0 deletions webbpsf/tests/test_nirspec.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@
import numpy as np
import pysiaf

import webbpsf
from .. import webbpsf_core
from .test_webbpsf import do_test_set_position_from_siaf, do_test_source_offset, generic_output_test

Expand Down Expand Up @@ -96,6 +97,7 @@ def test_IFU_wavelengths():
assert len(nrs.get_IFU_wavelengths(n)) == n



def test_aperture_rotation_updates():
""" Test that switching detector or aperture updates the aperture PA
(this is a tiny detail)"""
Expand All @@ -114,3 +116,26 @@ def test_aperture_rotation_updates():
nrs.detector = 'NRS2'
assert nrs.aperturename == 'NRS2_FULL'
assert nrs._rotation != pa_nrs1_full

def test_nrs_ifu_broadening():
""" Basic functional test for the code that adjusts PSF outputs to better match empirical IFU PSFs
"""
nrs = webbpsf_core.NIRSpec()
nrs.mode = 'IFU'
psf = nrs.calc_psf(monochromatic=2.8e-6, fov_pixels=10)

fwhm_oversamp = webbpsf.measure_fwhm(psf, ext='OVERSAMP')
fwhm_overdist = webbpsf.measure_fwhm(psf, ext='OVERDIST')
assert fwhm_overdist > fwhm_oversamp, "IFU broadening model should increase the FWHM for the distorted extensions"

fwhm_detsamp = webbpsf.measure_fwhm(psf, ext='DET_SAMP')
fwhm_detdist = webbpsf.measure_fwhm(psf, ext='DET_DIST')
assert fwhm_overdist > fwhm_oversamp, "IFU broadening model should increase the FWHM for the distorted extensions"

# Now test that we can also optionally turn off that effect
nrs.options['ifu_broadening'] = None
psf_nb = nrs.calc_psf(monochromatic=2.8e-6, fov_pixels=10)

fwhm_oversamp = webbpsf.measure_fwhm(psf_nb, ext='OVERSAMP')
fwhm_overdist = webbpsf.measure_fwhm(psf_nb, ext='OVERDIST')
assert fwhm_overdist == fwhm_oversamp, "IFU broadening model should be disabled for this test case"
27 changes: 15 additions & 12 deletions webbpsf/webbpsf_core.py
Original file line number Diff line number Diff line change
Expand Up @@ -1241,7 +1241,7 @@ def _calc_psf_format_output(self, result, options):

# Add distortion if set in calc_psf
if add_distortion:
_log.debug('Adding PSF distortion(s) and detector effects')
_log.info('Adding PSF distortion(s) and detector effects')

# Set up new extensions to add distortion to:
n_exts = len(result)
Expand Down Expand Up @@ -1278,26 +1278,28 @@ def _calc_psf_format_output(self, result, options):
else:
# there is not yet any distortion calibration for the IFU, and
# we don't want to apply charge diffusion directly here
psf_distorted = result
psf_distorted = detectors.apply_miri_ifu_broadening(result, options, slice_width=self._ifu_slice_width)
elif self.name == 'NIRSpec':
# Apply distortion effects to NIRSpec psf: Distortion only
# (because applying detector effects would only make sense after simulating spectral dispersion)
_log.debug('NIRSpec: Adding optical distortion')
if 'IFU' not in self.aperturename:
if self.mode != 'IFU':
psf_siaf = distortion.apply_distortion(result) # apply siaf distortion model
psf_distorted = detectors.apply_detector_charge_diffusion(
psf_siaf, options
) # apply detector charge transfer model

else:
# there is not yet any distortion calibration for the IFU.
psf_siaf = result
psf_distorted = detectors.apply_detector_charge_diffusion(
psf_siaf, options
) # apply detector charge transfer model
psf_distorted = detectors.apply_nirspec_ifu_broadening(result, options)

# Edit the variable to match if input didn't request distortion
# (cannot set result = psf_distorted due to return method)
[result.append(fits.ImageHDU()) for i in np.arange(len(psf_distorted) - len(result))]
for ext in np.arange(len(psf_distorted)):
result[ext] = psf_distorted[ext]

_log.info('Formatting output FITS extensions including for sampling.')
# Rewrite result variable based on output_mode; this includes binning down to detector sampling.
SpaceTelescopeInstrument._calc_psf_format_output(self, result, options)

Expand Down Expand Up @@ -2069,10 +2071,11 @@ def __init__(self):

self.monochromatic = 8.0
self._IFU_pixelscale = {
'Ch1': (0.176, 0.196),
'Ch2': (0.277, 0.196),
'Ch3': (0.387, 0.245),
'Ch4': (0.645, 0.273),
# slice width, pixel size. Values from Argyriou et al. 2023 A&A 675
'Ch1': (0.177, 0.196),
'Ch2': (0.280, 0.196),
'Ch3': (0.390, 0.245),
'Ch4': (0.656, 0.273),
}
# The above tuples give the pixel resolution (first the 'alpha' direction, perpendicular to the slice,
# then the 'beta' direction, along the slice).
Expand Down Expand Up @@ -2458,7 +2461,7 @@ def band(self, value):

if value in self._IFU_bands_cubepars.keys():
self._band = value
# self._slice_width = self._IFU_pixelscale[f"Ch{self._band[0]}"][0]
self._ifu_slice_width = self._IFU_pixelscale[f"Ch{self._band[0]}"][0]
self.aperturename = 'MIRIFU_CHANNEL' + value
# setting aperturename will also auto update self._rotation
# self._rotation = self.MRS_rotation[self._band]
Expand Down
Loading