We provide several baselines: conversational models, extractive reading comprehension models and their combined models for the CoQA challenge. See more details in the paper. We also provide instructions on how to run pretrained models on Codalab -- our platform for evaluation on the test set.
As we use the OpenNMT-py library for all our seq2seq experiments, please use the following command to clone our repository.
git clone --recurse-submodules [email protected]:stanfordnlp/coqa-baselines.git
This code repository was mostly written by Danqi Chen, built on top of the DrQA and OpenNMT-py projects, with some help from Shayne Longpre and Siva Reddy. If you have any questions about this repository, please use Github Issues.
torch>=0.4.0
torchtext==0.2.1
gensim
pycorenlp
Download the dataset:
mkdir data
wget -P data https://nlp.stanford.edu/data/coqa/coqa-train-v1.0.json
wget -P data https://nlp.stanford.edu/data/coqa/coqa-dev-v1.0.json
Download pre-trained word vectors:
mkdir wordvecs
wget -P wordvecs http://nlp.stanford.edu/data/wordvecs/glove.42B.300d.zip
unzip -d wordvecs wordvecs/glove.42B.300d.zip
wget -P wordvecs http://nlp.stanford.edu/data/wordvecs/glove.840B.300d.zip
unzip -d wordvecs wordvecs/glove.840B.300d.zip
mkdir lib
wget -P lib http://central.maven.org/maven2/edu/stanford/nlp/stanford-corenlp/3.9.1/stanford-corenlp-3.9.1.jar
java -mx4g -cp lib/stanford-corenlp-3.9.1.jar edu.stanford.nlp.pipeline.StanfordCoreNLPServer -port 9000 -timeout 15000
Generate the input files for seq2seq models --- needs to start a CoreNLP server (n_history
can be changed to {0, 1, 2, ..} or -1):
python scripts/gen_seq2seq_data.py --data_file data/coqa-train-v1.0.json --n_history 2 --lower --output_file data/seq2seq-train-h2
python scripts/gen_seq2seq_data.py --data_file data/coqa-dev-v1.0.json --n_history 2 --lower --output_file data/seq2seq-dev-h2
Preprocess the data and embeddings:
python seq2seq/preprocess.py -train_src data/seq2seq-train-h2-src.txt -train_tgt data/seq2seq-train-h2-tgt.txt -valid_src data/seq2seq-dev-h2-src.txt -valid_tgt data/seq2seq-dev-h2-tgt.txt -save_data data/seq2seq-h2 -lower -dynamic_dict -src_seq_length 10000
PYTHONPATH=seq2seq python seq2seq/tools/embeddings_to_torch.py -emb_file_enc wordvecs/glove.42B.300d.txt -emb_file_dec wordvecs/glove.42B.300d.txt -dict_file data/seq2seq-h2.vocab.pt -output_file data/seq2seq-h2.embed
Run a seq2seq (with attention) model:
python seq2seq/train.py -data data/seq2seq-h2 -save_model seq2seq_models/seq2seq -word_vec_size 300 -pre_word_vecs_enc data/seq2seq-h2.embed.enc.pt -pre_word_vecs_dec data/seq2seq-h2.embed.dec.pt -epochs 50 -gpuid 0 -seed 123
Run a seq2seq+copy model:
python seq2seq/train.py -data data/seq2seq-h2 -save_model seq2seq_models/seq2seq_copy -copy_attn -reuse_copy_attn -word_vec_size 300 -pre_word_vecs_enc data/seq2seq.embed.enc.pt -pre_word_vecs_dec data/seq2seq.embed.dec.pt -epochs 50 -gpuid 0 -seed 123
python seq2seq/translate.py -model seq2seq_models/seq2seq_copy_acc_65.49_ppl_4.71_e15.pt -src data/seq2seq-dev-h2-src.txt -output seq2seq_models/pred.txt -replace_unk -verbose -gpu 0
python scripts/gen_seq2seq_output.py --data_file data/coqa-dev-v1.0.json --pred_file seq2seq_models/pred.txt --output_file seq2seq_models/seq2seq_copy.prediction.json
Generate the input files for the reading comprehension (extractive question answering) model -- needs to start a CoreNLP server:
python scripts/gen_drqa_data.py --data_file data/coqa-train-v1.0.json --output_file coqa.train.json
python scripts/gen_drqa_data.py --data_file data/coqa-dev-v1.0.json --output_file coqa.dev.json
n_history
can be changed to {0, 1, 2, ..} or -1.
python rc/main.py --trainset data/coqa.train.json --devset data/coqa.dev.json --n_history 2 --dir rc_models --embed_file wordvecs/glove.840B.300d.txt
python rc/main.py --testset data/coqa.dev.json --n_history 2 --pretrained rc_models
python scripts/gen_pipeline_data.py --data_file data/coqa-train-v1.0.json --output_file1 data/coqa.train.pipeline.json --output_file2 data/seq2seq-train-pipeline
python scripts/gen_pipeline_data.py --data_file data/coqa-dev-v1.0.json --output_file1 data/coqa.dev.pipeline.json --output_file2 data/seq2seq-dev-pipeline
python seq2seq/preprocess.py -train_src data/seq2seq-train-pipeline-src.txt -train_tgt data/seq2seq-train-pipeline-tgt.txt -valid_src data/seq2seq-dev-pipeline-src.txt -valid_tgt data/seq2seq-dev-pipeline-tgt.txt -save_data data/seq2seq-pipeline -lower -dynamic_dict -src_seq_length 10000
PYTHONPATH=seq2seq python seq2seq/tools/embeddings_to_torch.py -emb_file_enc wordvecs/glove.42B.300d.txt -emb_file_dec wordvecs/glove.42B.300d.txt -dict_file data/seq2seq-pipeline.vocab.pt -output_file data/seq2seq-pipeline.embed
n_history
can be changed to {0, 1, 2, ..} or -1.
python rc/main.py --trainset data/coqa.train.pipeline.json --devset data/coqa.dev.pipeline.json --n_history 2 --dir pipeline_models --embed_file wordvecs/glove.840B.300d.txt --predict_raw_text n
python seq2seq/train.py -data data/seq2seq-pipeline -save_model pipeline_models/seq2seq_copy -copy_attn -reuse_copy_attn -word_vec_size 300 -pre_word_vecs_enc data/seq2seq-pipeline.embed.enc.pt -pre_word_vecs_dec data/seq2seq-pipeline.embed.dec.pt -epochs 50 -gpuid 0 -seed 123
python rc/main.py --testset data/coqa.dev.pipeline.json --n_history 2 --pretrained pipeline_models
python scripts/gen_pipeline_for_seq2seq.py --data_file data/coqa.dev.pipeline.json --output_file pipeline_models/pipeline-seq2seq-src.txt --pred_file pipeline_models/predictions.json
python seq2seq/translate.py -model pipeline_models/seq2seq_copy_acc_85.00_ppl_2.18_e16.pt -src pipeline_models/pipeline-seq2seq-src.txt -output pipeline_models/pred.txt -replace_unk -verbose -gpu 0
python scripts/gen_seq2seq_output.py --data_file data/coqa-dev-v1.0.json --pred_file pipeline_models/pred.txt --output_file pipeline_models/pipeline.prediction.json
All the results are based on n_history = 2
:
Model | Dev F1 | Dev EM |
---|---|---|
seq2seq | 20.9 | 17.7 |
seq2seq_copy | 45.2 | 38.0 |
DrQA | 55.6 | 46.2 |
pipeline | 65.0 | 54.9 |
@article{reddy2019coqa,
title={{CoQA}: A Conversational Question Answering Challenge},
author={Reddy, Siva and Chen, Danqi and Manning, Christopher D},
journal={Transactions of the Association of Computational Linguistics (TACL)},
year={2019}
}
MIT