Segmentation fault while executing run_video_slam #611
Unanswered
Shitikantha-Bagh
asked this question in
Q&A
Replies: 1 comment 2 replies
-
Can anyone please help me with this ? |
Beta Was this translation helpful? Give feedback.
2 replies
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
-
Hello @ymd-stella , Completely respect your time. Please have a look into below error, and let me know if you need any more input.
I have been working on the marker integration, so I just tried to store the markers data into the msgpack, and changed related files. Then built the stella vslam again with -DCMAKE_BUILD_TYPE=RelWithDebInfo .. make -j4 sudo make install.
I was getting the desired output, then I started to store reference keyframe and update local BA and global BA, but it was not showing good results, so commented out that part and built again. Now when I am executing the below command
./run_video_slam -v ./orb_vocab.fbow -m ./video/VID_20240508_130714_00_042.mp4 -c ~/lib_updated/stella_vslam/example/aist/equirectangular_marker.yaml --frame-skip 10 --no-sleep --map-db-out mapexample.msg
Here is the output I get:
[2024-07-02 11:22:43.846] [I] config file loaded: /home/sbagh/lib_updated/stella_vslam/example/aist/equirectangular_marker.yaml
--start-timestamp is not set. using system timestamp.
If --no-sleep is set without --start-timestamp, timestamps may overlap between multiple runs.
[2024-07-02 11:22:43.846] [I]
original version of OpenVSLAM,
Copyright (C) 2019,
National Institute of Advanced Industrial Science and Technology (AIST)
All rights reserved.
stella_vslam (the changes after forking from OpenVSLAM),
Copyright (C) 2022, stella-cv, All rights reserved.
This is free software,
and you are welcome to redistribute it under certain conditions.
See the LICENSE file.
Camera:
name: Insta 360 X3
setup: monocular
model: equirectangular
fps: 30.0
cols: 3840
rows: 1920
color_order: RGB
Preprocessing:
min_size: 1920
mask_rectangles:
- [0.0, 1.0, 0.0, 0.1]
- [0.0, 1.0, 0.84, 1.0]
- [0.0, 0.2, 0.7, 1.0]
- [0.8, 1.0, 0.7, 1.0]
Feature:
name: default ORB feature extraction setting
scale_factor: 1.2
num_levels: 8
ini_fast_threshold: 20
min_fast_threshold: 7
Mapping:
backend: g2o
baseline_dist_thr_ratio: 0.03
redundant_obs_ratio_thr: 0.95
num_covisibilities_for_landmark_generation: 20
num_covisibilities_for_landmark_fusion: 20
residual_deg_thr: 0.4
Tracking:
backend: g2o
LoopDetector:
backend: g2o
enabled: true
reject_by_graph_distance: true
min_distance_on_graph: 50
GraphOptimizer:
min_num_shared_lms: 200
GlobalOptimizer:
thr_neighbor_keyframes: 100
System:
map_format: msgpack
num_grid_cols: 96
num_grid_rows: 48
MarkerModel:
type: aruco
width: 0.3
marker_size: 4
max_markers: 100
[2024-07-02 11:22:43.847] [I] loading ORB vocabulary: ./orb_vocab.fbow
[2024-07-02 11:22:43.865] [I] load orb_params "default ORB feature extraction setting"
[2024-07-02 11:22:43.866] [I] startup SLAM system
[2024-07-02 11:22:43.866] [I] start global optimization module
[2024-07-02 11:22:43.866] [I] start mapping module
Stack trace (most recent call last) in thread 8544:
#10 Object "", at 0xffffffffffffffff, in
BFD: DWARF error: section .debug_info is larger than its filesize! (0x93f189 vs 0x531098)
#9 Object "/lib/x86_64-linux-gnu/libc.so.6", at 0x7fd5c37b6352, in clone
#8 Source "/build/glibc-LcI20x/glibc-2.31/nptl/pthread_create.c", line 477, in start_thread [0x7fd5c410e608]
#7 Object "/lib/x86_64-linux-gnu/libstdc++.so.6", at 0x7fd5c397adf3, in std::error_code::default_error_condition() const
#6 | Source "/usr/include/c++/9/thread", line 195, in _M_run
| 194: void
| > 195: _M_run() { _M_func(); }
| 196: };
| Source "/usr/include/c++/9/thread", line 251, in operator()
| 249: using _Indices
| 250: = typename _Build_index_tuple<tuple_size<_Tuple>::value>::__type;
| > 251: return _M_invoke(_Indices());
| 252: }
| 253: };
| Source "/usr/include/c++/9/thread", line 244, in _M_invoke<0>
| 242: typename __result<_Tuple>::type
| 243: _M_invoke(_Index_tuple<_Ind...>)
| > 244: { return std::__invoke(std::get<_Ind>(std::move(_M_t))...); }
| 245:
| 246: typename __result<_Tuple>::type
| Source "/usr/include/c++/9/bits/invoke.h", line 95, in __invoke<mono_tracking(const std::shared_ptr<stella_vslam::system>&, const std::shared_ptr<stella_vslam::config>&, const string&, const string&, unsigned int, unsigned int, bool, bool, bool, const string&, const string&, double, const string&)::<lambda()> >
| 93: using __type = typename __result::type;
| 94: using __tag = typename __result::__invoke_type;
| > 95: return std::__invoke_impl<__type>(__tag{}, std::forward<_Callable>(__fn),
| 96: std::forward<_Args>(__args)...);
| 97: }
| Source "/usr/include/c++/9/bits/invoke.h", line 60, in __invoke_impl<void, mono_tracking(const std::shared_ptr<stella_vslam::system>&, const std::shared_ptr<stella_vslam::config>&, const string&, const string&, unsigned int, unsigned int, bool, bool, bool, const string&, const string&, double, const string&)::<lambda()> >
| 58: constexpr _Res
| 59: __invoke_impl(__invoke_other, _Fn&& __f, _Args&&... __args)
| > 60: { return std::forward<_Fn>(__f)(std::forward<_Args>(__args)...); }
| 61:
| 62: template<typename _Res, typename _MemFun, typename _Tp, typename... _Args>
Source "/home/sbagh/lib_updated/stella_vslam_examples/src/run_video_slam.cc", line 166, in std::thread::_State_impl<std::thread::_Invoker<std::tuple<mono_tracking(std::shared_ptr<stella_vslam::system> const&, std::shared_ptr<stella_vslam::config> const&, std::__cxx11::basic_string<char, std::char_traits, std::allocator > const&, std::__cxx11::basic_string<char, std::char_traits, std::allocator > const&, unsigned int, unsigned int, bool, bool, bool, std::__cxx11::basic_string<char, std::char_traits, std::allocator > const&, std::__cxx11::basic_string<char, std::char_traits, std::allocator > const&, double, std::__cxx11::basic_string<char, std::char_traits, std::allocator > const&)::{lambda()#1}> > >::_M_run() [0x55d61c252f8b]
164: if (!frame.empty() && (num_frame % frame_skip == 0)) {
165: // input the current frame and estimate the camera pose
> 166: slam->feed_monocular_frame(frame, timestamp, mask);
167: }
168:
169: const auto tp_2 = std::chrono::steady_clock::now();
Segmentation fault (core dumped)
I found a similiar closed issue #455 and followed the steps to install Fbow again, but got same error. Please let me know how to rectify and what is the cause of error. Thank you.
Beta Was this translation helpful? Give feedback.
All reactions