Skip to content

Commit

Permalink
Merge pull request #73 from stemangiola/update-README
Browse files Browse the repository at this point in the history
Update readme
  • Loading branch information
stemangiola authored Feb 15, 2023
2 parents 98c1773 + 6a2740a commit b0c4e09
Show file tree
Hide file tree
Showing 8 changed files with 159 additions and 22 deletions.
52 changes: 51 additions & 1 deletion DESCRIPTION
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,57 @@ Authors@R: c(
"Stefano",
"Mangiola",
email = "[email protected]",
role = c("aut", "cre")
role = c("aut", "cre", "rev")
),
person(
"Michael",
"Milton",
email = "[email protected]",
role = c("aut", "rev")
),
person(
"Martin",
"Morgan",
email = "[email protected]",
role = c("ctb", "rev")
),
person(
"Vincent",
"Carey",
email = "[email protected]",
role = c("ctb", "rev")
),
person(
"Julie",
"Iskander",
email = "[email protected]",
role = c( "rev")
),
person(
"Tony",
"Papenfuss",
email = "[email protected]",
role = c( "rev")
),
person(
"Silicon Valley Foundation",
"CZF2019-002443",
role = c( "fnd")
),
person(
"NIH NHGRI",
"5U24HG004059-18",
role = c( "fnd")
),
person(
"Victoria Cancer Agnency",
"ECRF21036",
role = c( "fnd")
),
person(
"NHMRC",
"1116955",
role = c( "fnd")
))
Description: Provides access to a copy of the Human Cell Atlas, but with
harmonised metadata. This allows for uniform querying across numerous
Expand Down
45 changes: 38 additions & 7 deletions README.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -3,9 +3,12 @@ title: "CuratedAtlasQueryR"
output: github_document
---

`CuratedAtlasQuery` is a query interface that allow the programmatic exploration and retrieval of the harmonised, curated and reannotated CELLxGENE single-cell human cell atlas. Data can be retrieved at cell, sample, or dataset levels based on filtering criteria.
<!-- badges: start -->
[![Lifecycle:maturing](https://img.shields.io/badge/lifecycle-maturing-blue.svg)](https://www.tidyverse.org/lifecycle/#maturing)
<!-- badges: end -->

# Query interface

`CuratedAtlasQuery` is a query interface that allow the programmatic exploration and retrieval of the harmonised, curated and reannotated CELLxGENE single-cell human cell atlas. Data can be retrieved at cell, sample, or dataset levels based on filtering criteria.

```{r, include = FALSE}
# Note: knit this to the repo readme file using:
Expand All @@ -16,8 +19,27 @@ knitr::opts_chunk$set(
)
```

```{r, echo=FALSE, out.height = "139px", out.width = "120px"}
knitr::include_graphics("inst/logo.png")
```{r, echo=FALSE, out.height = c("139px"), out.width = "120x" }
knitr::include_graphics(c("inst/logo.png"))
```

```{r, echo=FALSE, out.height = c("58px"), out.width = c("155x", "129px", "202px", "219px")}
knitr::include_graphics(c(
"inst/svcf_logo.jpeg",
"inst/czi_logo.png",
"inst/bioconductor_logo.jpg",
"inst/vca_logo.png"
))
```

[website](https://stemangiola.github.io/CuratedAtlasQueryR)

# Query interface

## Installation

```{r, eval=FALSE}
devtools::install_github("stemangiola/CuratedAtlasQueryR")
```

## Load the package
Expand All @@ -38,7 +60,7 @@ get_metadata()

### Explore the tissue

```{r, eval=FALSE}
```{r}
get_metadata() |>
dplyr::distinct(tissue, file_id)
```
Expand Down Expand Up @@ -189,7 +211,7 @@ Through harmonisation and curation we introduced custom column, not present in t

- `tissue_harmonised`: a coarser tissue name for better filtering
- `age_days`: the number of days corresponding to the age
- `cell_type_harmonised`: the consensus call identiti (for immune cells) using the original and three novel annotations using Seurat Azimuth and SingleR
- `cell_type_harmonised`: the consensus call identity (for immune cells) using the original and three novel annotations using Seurat Azimuth and SingleR
- `confidence_class`: an ordinal class of how confident `cell_type_harmonised` is. 1 is complete consensus, 2 is 3 out of four and so on.
- `cell_annotation_azimuth_l2`: Azimuth cell annotation
- `cell_annotation_blueprint_singler`: SingleR cell annotation using Blueprint reference
Expand All @@ -201,6 +223,15 @@ Through harmonisation and curation we introduced custom column, not present in t

# RNA abundance

The `raw` assay includes RNA abundance in the positive real scale (not transformed with non-linear functions, e.g. log sqrt). Originally CELLxGENE include a mix of scales and tranformations specified in the `x_normalization` column.
The `raw` assay includes RNA abundance in the positive real scale (not transformed with non-linear functions, e.g. log sqrt). Originally CELLxGENE include a mix of scales and transformations specified in the `x_normalization` column.

The `cpm` assay includes counts per million.

---

This project has been funded by

- *Silicon Valley Foundation* CZF2019-002443
- *Bioconductor core funding* NIH NHGRI 5U24HG004059-18
- *Victoria Cancer Agency* ECRF21036
- *Australian National Health and Medical Research Council* 1116955
49 changes: 44 additions & 5 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,14 +1,29 @@
CuratedAtlasQueryR
================

<!-- badges: start -->

[![Lifecycle:maturing](https://img.shields.io/badge/lifecycle-maturing-blue.svg)](https://www.tidyverse.org/lifecycle/#maturing)
<!-- badges: end -->

`CuratedAtlasQuery` is a query interface that allow the programmatic
exploration and retrieval of the harmonised, curated and reannotated
CELLxGENE single-cell human cell atlas. Data can be retrieved at cell,
sample, or dataset levels based on filtering criteria.

<img src="inst/logo.png" width="120x" height="139px" />

<img src="inst/svcf_logo.jpeg" width="155x" height="58px" /><img src="inst/czi_logo.png" width="129px" height="58px" /><img src="inst/bioconductor_logo.jpg" width="202px" height="58px" /><img src="inst/vca_logo.png" width="219px" height="58px" />

[website](https://stemangiola.github.io/CuratedAtlasQueryR)

# Query interface

<img src="inst/logo.png" width="120px" height="139px" />
## Installation

``` r
devtools::install_github("stemangiola/CuratedAtlasQueryR")
```

## Load the package

Expand All @@ -24,8 +39,8 @@ library(stringr)

``` r
get_metadata()
#> # Source: table<metadata> [?? x 56]
#> # Database: sqlite 3.40.0 [/stornext/Home/data/allstaff/m/mangiola.s/.cache/R/CuratedAtlasQueryR/metadata.sqlite]
#> # Source: table</stornext/Home/data/allstaff/m/mangiola.s/.cache/R/CuratedAtlasQueryR/metadata.parquet> [?? x 56]
#> # Database: DuckDB 0.6.2-dev1166 [unknown@Linux 3.10.0-1160.81.1.el7.x86_64:R 4.2.0/:memory:]
#> .cell sampl…¹ .sample .samp…² assay assay…³ file_…⁴ cell_…⁵ cell_…⁶ devel…⁷
#> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 AAACCT… 8a0fe0… 5f20d7… D17PrP… 10x … EFO:00… 1e334b… basal … CL:000… 31-yea…
Expand All @@ -52,6 +67,21 @@ get_metadata()
``` r
get_metadata() |>
dplyr::distinct(tissue, file_id)
#> # Source: SQL [?? x 2]
#> # Database: DuckDB 0.6.2-dev1166 [unknown@Linux 3.10.0-1160.81.1.el7.x86_64:R 4.2.0/:memory:]
#> tissue file_id
#> <chr> <chr>
#> 1 blood 07beec85-51be-4d73-bb80-8f85b7b643d5
#> 2 blood 3431ab62-b11d-445f-a461-1408d2b29f8c
#> 3 blood 5500774a-6ebe-4ddf-adce-90302b7cd007
#> 4 blood 550760cb-ede9-4e6b-b6ab-7152f2ce29e1
#> 5 blood a0396bf6-cd6d-42d9-b1b5-c66b19d312ae
#> 6 cortex of kidney a1035da5-137b-4fac-8435-d1e4af20851c
#> 7 blood a139b1d6-eba0-484d-860c-4fb810e17615
#> 8 prefrontal cortex 27e51147-93c7-40c5-a6a3-da4b203e05ba
#> 9 macula lutea proper 28d54b40-7a92-40cf-b164-a6c3158f55f6
#> 10 fovea centralis 28d54b40-7a92-40cf-b164-a6c3158f55f6
#> # … with more rows
```

``` r
Expand Down Expand Up @@ -277,7 +307,7 @@ present in the original CELLxGENE metadata

- `tissue_harmonised`: a coarser tissue name for better filtering
- `age_days`: the number of days corresponding to the age
- `cell_type_harmonised`: the consensus call identiti (for immune cells)
- `cell_type_harmonised`: the consensus call identity (for immune cells)
using the original and three novel annotations using Seurat Azimuth
and SingleR
- `confidence_class`: an ordinal class of how confident
Expand All @@ -297,7 +327,16 @@ present in the original CELLxGENE metadata

The `raw` assay includes RNA abundance in the positive real scale (not
transformed with non-linear functions, e.g. log sqrt). Originally
CELLxGENE include a mix of scales and tranformations specified in the
CELLxGENE include a mix of scales and transformations specified in the
`x_normalization` column.

The `cpm` assay includes counts per million.

------------------------------------------------------------------------

This project has been funded by

- *Silicon Valley Foundation* CZF2019-002443
- *Bioconductor core funding* NIH NHGRI 5U24HG004059-18
- *Victoria Cancer Agency* ECRF21036
- *Australian National Health and Medical Research Council* 1116955
Binary file added inst/bioconductor_logo.jpg
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added inst/czi_logo.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added inst/svcf_logo.jpeg
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added inst/vca_logo.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
35 changes: 26 additions & 9 deletions vignettes/Introduction.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -7,9 +7,11 @@ vignette: >
%\VignetteEncoding{UTF-8}
---

`CuratedAtlasQuery` is a query interface that allow the programmatic exploration and retrieval of the harmonised, curated and reannotated CELLxGENE single-cell human cell atlas. Data can be retrieved at cell, sample, or dataset levels based on filtering criteria.
<!-- badges: start -->
[![Lifecycle:maturing](https://img.shields.io/badge/lifecycle-maturing-blue.svg)](https://www.tidyverse.org/lifecycle/#maturing)
<!-- badges: end -->

# Query interface
`CuratedAtlasQuery` is a query interface that allow the programmatic exploration and retrieval of the harmonised, curated and reannotated CELLxGENE single-cell human cell atlas. Data can be retrieved at cell, sample, or dataset levels based on filtering criteria.

```{r, include = FALSE}
# Note: knit this to the repo readme file using:
Expand All @@ -20,9 +22,25 @@ knitr::opts_chunk$set(
)
```

```{r, echo=FALSE, out.height = "139px", out.width = "120px"}
system.file("logo.png", package="CuratedAtlasQueryR") |>
knitr::include_graphics()
```{r, echo=FALSE, out.height = c("139px"), out.width = "120x" }
knitr::include_graphics(c("../inst/logo.png"))
```

```{r, echo=FALSE, out.height = c("58px"), out.width = c("155x", "129px", "202px", "219px")}
knitr::include_graphics(c(
"../inst/svcf_logo.jpeg",
"../inst/czi_logo.png",
"../inst/bioconductor_logo.jpg",
"../inst/vca_logo.png"
))
```

# Query interface

## Installation

```{r, eval=FALSE}
devtools::install_github("stemangiola/CuratedAtlasQueryR")
```

## Load the package
Expand Down Expand Up @@ -175,8 +193,7 @@ meta |>
```

```{r, echo=FALSE, message=FALSE, warning=FALSE}
system.file("NCAM1_figure.png", package="CuratedAtlasQueryR") |>
knitr::include_graphics()
knitr::include_graphics("../inst/NCAM1_figure.png")
```

# Cell metadata
Expand All @@ -197,7 +214,7 @@ Through harmonisation and curation we introduced custom column, not present in t

- `tissue_harmonised`: a coarser tissue name for better filtering
- `age_days`: the number of days corresponding to the age
- `cell_type_harmonised`: the consensus call identiti (for immune cells) using the original and three novel annotations using Seurat Azimuth and SingleR
- `cell_type_harmonised`: the consensus call identity (for immune cells) using the original and three novel annotations using Seurat Azimuth and SingleR
- `confidence_class`: an ordinal class of how confident `cell_type_harmonised` is. 1 is complete consensus, 2 is 3 out of four and so on.
- `cell_annotation_azimuth_l2`: Azimuth cell annotation
- `cell_annotation_blueprint_singler`: SingleR cell annotation using Blueprint reference
Expand All @@ -209,6 +226,6 @@ Through harmonisation and curation we introduced custom column, not present in t

# RNA abundance

The `raw` assay includes RNA abundance in the positive real scale (not transformed with non-linear functions, e.g. log sqrt). Originally CELLxGENE include a mix of scales and tranformations specified in the `x_normalization` column.
The `raw` assay includes RNA abundance in the positive real scale (not transformed with non-linear functions, e.g. log sqrt). Originally CELLxGENE include a mix of scales and transformations specified in the `x_normalization` column.

The `cpm` assay includes counts per million.

0 comments on commit b0c4e09

Please sign in to comment.