Schulz, M.A., Yeo, T., Vogelstein, J., Mourao-Miranada, J., Kather, J., Kording, K., Richards, B.A. and Bzdok, D., 2019. Deep learning for brains?: Different linear and nonlinear scaling in UK Biobank brain images vs. machine-learning datasets. bioRxiv, p.757054.
-
create conda environment
conda env create --prefix .envs/deeperbrain_public -f env.yaml
-
activate environment
source activate .envs/deeperbrain_public
-
prepare datasets
python prepare_datasets.py mnist
This should work for the publicly available datasets MNIST, Fashion, Tissue (Kather et al. 2019), Superconductivity (Hamidieh et al. 2018). UK Biobank data is not public, but you can find details on our preprocessing inlib/ukbb_preprocessing
. -
run analyses, e.g.:
python run.py --data mnist --model logisticregression --grid v3
-
aggregate results to csv file
python aggregate_results.py
-
plot, e.g.:
python plot.py mnist --grid v3