-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit 8d6e1e0
Showing
26 changed files
with
63,952 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
MIT License | ||
|
||
Copyright (c) 2019 Timo Block | ||
|
||
Permission is hereby granted, free of charge, to any person obtaining a copy | ||
of this software and associated documentation files (the "Software"), to deal | ||
in the Software without restriction, including without limitation the rights | ||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
copies of the Software, and to permit persons to whom the Software is | ||
furnished to do so, subject to the following conditions: | ||
|
||
The above copyright notice and this permission notice shall be included in all | ||
copies or substantial portions of the Software. | ||
|
||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
SOFTWARE. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,13 @@ | ||
# thesis-data | ||
|
||
This repository contains supplementary scripts and data for my thesis. | ||
I classified the [Ten Thousand German News Articles Dataset](https://tblock.github.io/10kGNAD/) with four text classifiers. Namely a Support Vector Machine, facebook's [fastText](https://fasttext.cc) libary, a TensorFlow neuronal net and the [ULMFiT](https://arxiv.org/abs/1801.06146) method. | ||
|
||
|
||
The scripts can be run in a [Google Colab IPython Notebook](https://colab.research.google.com). | ||
|
||
- SVM [[view]](https://github.com/tblock/thesis-data/blob/master/reproduce_SVM.ipynb) [[run]](https://colab.research.google.com/github/tblock/thesis-data/blob/master/reproduce_SVM.ipynb) | ||
- fastText [[view]](https://github.com/tblock/thesis-data/blob/master/reproduce_fastText.ipynb) [[run]](https://colab.research.google.com/github/tblock/thesis-data/blob/master/reproduce_fastText.ipynb) | ||
- TensorFlow [[view]](https://github.com/tblock/thesis-data/blob/master/reproduce_TensorFlow.ipynb) [[run]](https://colab.research.google.com/github/tblock/thesis-data/blob/master/reproduce_TensorFlow.ipynb) | ||
- ULMFiT [[view]](https://github.com/tblock/thesis-data/blob/master/reproduce_ULMFiT.ipynb) [[run]](https://colab.research.google.com/github/tblock/thesis-data/blob/master/reproduce_ULMFiT.ipynb) | ||
|
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,256 @@ | ||
{ | ||
"nbformat": 4, | ||
"nbformat_minor": 0, | ||
"metadata": { | ||
"colab": { | ||
"name": "REP_SVM.ipynb", | ||
"version": "0.3.2", | ||
"provenance": [], | ||
"collapsed_sections": [], | ||
"toc_visible": true | ||
}, | ||
"kernelspec": { | ||
"name": "python3", | ||
"display_name": "Python 3" | ||
} | ||
}, | ||
"cells": [ | ||
{ | ||
"metadata": { | ||
"id": "5_EKIwLlcII7", | ||
"colab_type": "text" | ||
}, | ||
"cell_type": "markdown", | ||
"source": [ | ||
"## Support Vector Machine to classify the [Ten Thousand German News Articles Dataset](https://github.com/tblock/10kGNAD)\n", | ||
"This Notebook contains the code to reproduce the results in my thesis.\n", | ||
"The code reproduces the exact results.\n", | ||
"\n", | ||
"Run all cells consecutively." | ||
] | ||
}, | ||
{ | ||
"metadata": { | ||
"id": "84eqgmr2RZhY", | ||
"colab_type": "text" | ||
}, | ||
"cell_type": "markdown", | ||
"source": [ | ||
"### Enviroment Setup " | ||
] | ||
}, | ||
{ | ||
"metadata": { | ||
"id": "oyzQUOgwcy2W", | ||
"colab_type": "code", | ||
"outputId": "3a646b13-70f0-4492-9dde-a8141fd261a0", | ||
"colab": { | ||
"base_uri": "https://localhost:8080/", | ||
"height": 53 | ||
} | ||
}, | ||
"cell_type": "code", | ||
"source": [ | ||
"# load the dataset and generate subsets\n", | ||
"!rm -rf 10kGNAD lowshot\n", | ||
"!git config --global advice.detachedHead false\n", | ||
"!git clone -q --branch v1.1 https://github.com/tblock/10kGNAD.git && echo \"downloaded dataset\"\n", | ||
"!mkdir lowshot\n", | ||
"!cp 10kGNAD/train.csv .\n", | ||
"!python 10kGNAD/code/generate_lowshot_sets.py > /dev/null && echo \"generated train subsets\"" | ||
], | ||
"execution_count": 0, | ||
"outputs": [ | ||
{ | ||
"output_type": "stream", | ||
"text": [ | ||
"downloaded dataset\n", | ||
"generated train subsets\n" | ||
], | ||
"name": "stdout" | ||
} | ||
] | ||
}, | ||
{ | ||
"metadata": { | ||
"id": "3wuK2dHCcHf9", | ||
"colab_type": "code", | ||
"colab": {} | ||
}, | ||
"cell_type": "code", | ||
"source": [ | ||
"import glob\n", | ||
"import numpy as np\n", | ||
"import pandas as pd\n", | ||
"from sklearn.svm import LinearSVC\n", | ||
"from sklearn.pipeline import Pipeline\n", | ||
"from sklearn.feature_extraction.text import CountVectorizer\n", | ||
"from sklearn.feature_extraction.text import TfidfTransformer\n", | ||
"from sklearn.preprocessing import StandardScaler" | ||
], | ||
"execution_count": 0, | ||
"outputs": [] | ||
}, | ||
{ | ||
"metadata": { | ||
"id": "63NWI1D4RiJb", | ||
"colab_type": "text" | ||
}, | ||
"cell_type": "markdown", | ||
"source": [ | ||
"### Train Models" | ||
] | ||
}, | ||
{ | ||
"metadata": { | ||
"id": "9b1C4PVtt4LL", | ||
"colab_type": "code", | ||
"colab": {} | ||
}, | ||
"cell_type": "code", | ||
"source": [ | ||
"# load test set\n", | ||
"df_test = pd.read_csv('10kGNAD/test.csv', header=None, sep=';', quotechar=\"'\", names=['label', 'text'])" | ||
], | ||
"execution_count": 0, | ||
"outputs": [] | ||
}, | ||
{ | ||
"metadata": { | ||
"id": "fIRl3HQvutRJ", | ||
"colab_type": "code", | ||
"outputId": "67b95baf-1ecb-40b4-991b-90b798bd60d2", | ||
"colab": { | ||
"base_uri": "https://localhost:8080/", | ||
"height": 1637 | ||
} | ||
}, | ||
"cell_type": "code", | ||
"source": [ | ||
"filenames = sorted(glob.glob(\"lowshot/*.csv\"))\n", | ||
"\n", | ||
"for filename in filenames: # for each subset\n", | ||
" \n", | ||
" df_train = pd.read_csv(filename, header=None, sep=';', quotechar=\"'\", names=['label', 'text'])\n", | ||
"\n", | ||
" # build the classifier pipeline\n", | ||
" lsvc_classifier = Pipeline([\n", | ||
" ('vect', CountVectorizer()),\n", | ||
" ('tfidf', TfidfTransformer(\n", | ||
" sublinear_tf=True # Apply sublinear tf scaling, i.e. replace tf with 1 + log(tf).\n", | ||
" )),\n", | ||
" ('clf', LinearSVC(\n", | ||
" dual=False,\n", | ||
" C=1.6,\n", | ||
" class_weight=\"balanced\"\n", | ||
" ))\n", | ||
" ])\n", | ||
"\n", | ||
" lsvc_classifier.fit(df_train['text'], df_train['label']) # train the classifier\n", | ||
" predicted = lsvc_classifier.predict(df_test['text']) # predict the test set \n", | ||
" acc = np.mean(predicted == df_test['label']) # calculate the accuracy\n", | ||
" \n", | ||
" print(filename[16:-4],\"%.2f\" % float((100 - acc*100)), sep=\" -> \") # print the error rate " | ||
], | ||
"execution_count": 0, | ||
"outputs": [ | ||
{ | ||
"output_type": "stream", | ||
"text": [ | ||
"0_0.01_0 -> 40.56\n", | ||
"0_0.01_1 -> 39.40\n", | ||
"0_0.01_2 -> 36.87\n", | ||
"0_0.01_3 -> 38.13\n", | ||
"0_0.01_4 -> 42.02\n", | ||
"0_0.01_5 -> 40.56\n", | ||
"0_0.01_6 -> 39.59\n", | ||
"0_0.01_7 -> 38.33\n", | ||
"0_0.01_8 -> 38.04\n", | ||
"0_0.01_9 -> 39.59\n", | ||
"1_0.02_0 -> 32.10\n", | ||
"1_0.02_1 -> 27.72\n", | ||
"1_0.02_2 -> 30.64\n", | ||
"1_0.02_3 -> 32.78\n", | ||
"1_0.02_4 -> 28.21\n", | ||
"1_0.02_5 -> 29.38\n", | ||
"1_0.02_6 -> 30.06\n", | ||
"1_0.02_7 -> 28.99\n", | ||
"1_0.02_8 -> 31.81\n", | ||
"1_0.02_9 -> 32.10\n", | ||
"2_0.05_0 -> 22.76\n", | ||
"2_0.05_1 -> 24.22\n", | ||
"2_0.05_2 -> 20.53\n", | ||
"2_0.05_3 -> 21.89\n", | ||
"2_0.05_4 -> 22.86\n", | ||
"2_0.05_5 -> 22.57\n", | ||
"2_0.05_6 -> 22.76\n", | ||
"2_0.05_7 -> 24.51\n", | ||
"2_0.05_8 -> 21.69\n", | ||
"2_0.05_9 -> 22.28\n", | ||
"3_0.075_0 -> 18.97\n", | ||
"3_0.075_1 -> 19.26\n", | ||
"3_0.075_2 -> 20.72\n", | ||
"3_0.075_3 -> 20.43\n", | ||
"3_0.075_4 -> 20.53\n", | ||
"3_0.075_5 -> 19.94\n", | ||
"3_0.075_6 -> 19.94\n", | ||
"3_0.075_7 -> 19.84\n", | ||
"3_0.075_8 -> 19.65\n", | ||
"3_0.075_9 -> 20.14\n", | ||
"4_0.1_0 -> 19.36\n", | ||
"4_0.1_1 -> 18.68\n", | ||
"4_0.1_2 -> 17.02\n", | ||
"4_0.1_3 -> 18.77\n", | ||
"4_0.1_4 -> 17.32\n", | ||
"4_0.1_5 -> 17.61\n", | ||
"4_0.1_6 -> 18.48\n", | ||
"4_0.1_7 -> 18.68\n", | ||
"4_0.1_8 -> 17.61\n", | ||
"4_0.1_9 -> 17.02\n", | ||
"5_0.2_0 -> 14.98\n", | ||
"5_0.2_1 -> 15.47\n", | ||
"5_0.2_2 -> 14.88\n", | ||
"5_0.2_3 -> 15.66\n", | ||
"5_0.2_4 -> 15.27\n", | ||
"5_0.2_5 -> 15.37\n", | ||
"5_0.2_6 -> 16.73\n", | ||
"5_0.2_7 -> 15.56\n", | ||
"5_0.2_8 -> 16.15\n", | ||
"5_0.2_9 -> 15.47\n", | ||
"6_0.5_0 -> 13.13\n", | ||
"6_0.5_1 -> 13.04\n", | ||
"6_0.5_2 -> 13.23\n", | ||
"6_0.5_3 -> 12.45\n", | ||
"6_0.5_4 -> 13.42\n", | ||
"6_0.5_5 -> 12.65\n", | ||
"6_0.5_6 -> 13.13\n", | ||
"6_0.5_7 -> 13.91\n", | ||
"6_0.5_8 -> 13.04\n", | ||
"6_0.5_9 -> 12.84\n", | ||
"7_0.75_0 -> 11.28\n", | ||
"7_0.75_1 -> 11.87\n", | ||
"7_0.75_2 -> 12.06\n", | ||
"7_0.75_3 -> 12.65\n", | ||
"7_0.75_4 -> 12.35\n", | ||
"7_0.75_5 -> 11.58\n", | ||
"7_0.75_6 -> 12.35\n", | ||
"7_0.75_7 -> 12.06\n", | ||
"7_0.75_8 -> 12.06\n", | ||
"7_0.75_9 -> 12.26\n", | ||
"8_1.0_0 -> 11.48\n", | ||
"8_1.0_1 -> 11.48\n", | ||
"8_1.0_2 -> 11.48\n", | ||
"8_1.0_3 -> 11.48\n", | ||
"8_1.0_4 -> 11.48\n", | ||
"8_1.0_5 -> 11.48\n", | ||
"8_1.0_6 -> 11.48\n", | ||
"8_1.0_7 -> 11.48\n", | ||
"8_1.0_8 -> 11.48\n", | ||
"8_1.0_9 -> 11.48\n" | ||
], | ||
"name": "stdout" | ||
} | ||
] | ||
} | ||
] | ||
} |
Oops, something went wrong.