Skip to content

Commit

Permalink
add chapter labels for more stable URLs
Browse files Browse the repository at this point in the history
  • Loading branch information
teorth committed Nov 5, 2024
1 parent 83d4642 commit daf173e
Show file tree
Hide file tree
Showing 14 changed files with 19 additions and 18 deletions.
4 changes: 2 additions & 2 deletions blueprint/src/chapter/beta.tex
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
\chapter{Exponential sum growth exponents}
\chapter{Exponential sum growth exponents}\label{beta-chapter}

\section{Phase functions}

Expand Down Expand Up @@ -116,7 +116,7 @@ \section{Exponential sum exponent}
and hence by the pigeonhole principle
$$ T^{2\beta(\alpha)+o(1)} \ll N^2 H^{-1} + H^2 + T^{o(1)} N H^{-1} \sum_{j = T^{h'+o(1)}} |\sum_{n \in I \cap I-h} e(T (F((n+j)/N) - F(n/N)))|$$
for some $2\alpha-1 \leq h' \leq h$ (one can delete this term if $h < 2\alpha-1$). One can verify that $-\frac{1}{\sigma} \frac{N}{j} (F(u+j/N)-F(u))$ is a model phase function. Thus, by Definition \ref{beta-def}, one has
$$ \sum_{n \in I \cap I-h} e(T (F((n+j)/N) - F(n/N)))) \ll (T^{1+h'+o(1)}/N)^{\beta(\alpha/(h'+1-\alpha))+o(1)},$$
$$ \sum_{n \in I \cap I-h} e(T (F((n+j)/N) - F(n/N))) \ll (T^{1+h'+o(1)}/N)^{\beta(\alpha/(h'+1-\alpha))+o(1)},$$
and the claim follows after evaluating all terms as powers of $T$.
\end{proof}

Expand Down
2 changes: 1 addition & 1 deletion blueprint/src/chapter/divisor_sum.tex
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
\chapter{The generalized Dirichlet divisor problem}
\chapter{The generalized Dirichlet divisor problem}\label{divisor-chapter}

\begin{definition}[Divisor sum exponents]\label{divisor-def} Let $k \geq 1$ be a fixed integer. Then, $\alpha_k$ is the best (fixed) exponent for which one has the asymptotic
$$ \sum_{n \leq x} d_k(n) = x P_{k-1}(\log x) + O(x^{\alpha_k+o(1)})$$
Expand Down
10 changes: 5 additions & 5 deletions blueprint/src/chapter/exponent_pairs.tex
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
\chapter{Exponent pairs}
\chapter{Exponent pairs}\label{exponent-pairs-chapter}

\begin{definition}[Exponent pair]\label{exp-pair-def}\uses{phase-def} An exponent pair is a (fixed) element $(k,\ell)$ of the triangle
\begin{equation}\label{exp-pair-triangle}
Expand Down Expand Up @@ -271,7 +271,7 @@ \section{Known exponent pairs}
\code{prove_exponent_pair(frac(10769,351096), frac(609317,702192))}
\code{prove_exponent_pair(frac(89,3478), frac(15327,17390))}

In summary, the current set of known exponent pairs is the convex hull with vertices $(0, 1)$, $(1/2, 1/2)$ and the points $(k_n, \ell_n)$ for $n \in \Z$ that are recorded in Table \ref{exp_pair_table}.
In summary, the current set of known exponent pairs is the convex hull with vertices $(0, 1)$, $(1/2, 1/2)$ and the points $(k_n, \ell_n)$ for $n \in \Z$ that are recorded in Table \ref{exp_pair_table}.

\begin{table}[ht]
\label{exp_pair_table}
Expand Down Expand Up @@ -301,10 +301,10 @@ \section{Known exponent pairs}
8 & $\left(\dfrac{10769}{351096}, \dfrac{609317}{702192}\right)$ & Theorem \ref{new-exp-pair} \\
\hline
9 & $\left(\dfrac{89}{3478}, \dfrac{15327}{17390}\right)$ & Theorem \ref{new-exp-pair} \\
\hline
\hline
$n \ge 10$ & \begin{tabular}{@{}c@{}}$(p_{n + 4}, q_{n + 4})$, where \\
$(p_m, q_m) = \left(\dfrac{2}{(m-1)^2(m+2)}, 1 - \dfrac{3m-2}{m(m-1)(m+2)}\right)$\end{tabular} & Theorem \ref{heath-brown_exp_pair_2017} \\
\hline
\hline
$n < 0$ & $B(k_{-n}, \ell_{-n})$ & Proposition \ref{vdc-b} \\
\hline
\end{tabular}
Expand All @@ -316,4 +316,4 @@ \section{Known exponent pairs}
\includegraphics[width=0.5\linewidth]{chapter/exp_pair_plot.png}
\caption{The convex hull of known exponent pairs, whose vertices $(k_n, \ell_n)$ are given in Table \ref{exp_pair_table}.}
\label{fig:exp_pair_plot}
\end{figure}
\end{figure}
2 changes: 1 addition & 1 deletion blueprint/src/chapter/intro.tex
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
\chapter{Introduction}
\chapter{Introduction}\label{intro-chapter}

This is the LaTeX ``Blueprint'' form of the \emph{analytic number theory exponent database (ANTEDB)}, which is an ongoing project to record (both in a human-readable and computer-executable formats) the latest known bounds, conjectures, and other relationships concerning several exponents of interest in analytic number theory. It can be viewed as an expansion of the paper \cite{trudgian-yang}. Currently, the database is recording information on the following exponents:

Expand Down
2 changes: 1 addition & 1 deletion blueprint/src/chapter/l2.tex
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
\chapter{Basic Fourier estimates}
\chapter{Basic Fourier estimates}\label{l2-chapter}

\begin{lemma}[$L^2$ integral estimate]\label{l2-int} Let $\xi_1,\dots,\xi_R$ be real numbers that are $1/N$-separated. Then for any interval $I$ of length $T$, and any sequence $a_1,\dots,a_R$ of complex numbers one has
$$ \int_I |\sum_{r=1}^R a_r e(\xi_r t)|^2\ dt = (T + O(N)) \sum_{r=1}^R |a_r|^2.$$
Expand Down
2 changes: 1 addition & 1 deletion blueprint/src/chapter/large_values.tex
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
\chapter{Large value estimates}
\chapter{Large value estimates}\label{largevalue-chapter}

The theory of zero density estimates for the Riemann zeta function (and other $L$-functions) rests on the study of what will be called \emph{large value patterns} in this blueprint.

Expand Down
2 changes: 1 addition & 1 deletion blueprint/src/chapter/notation.tex
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
\chapter{Basic notation}
\chapter{Basic notation}\label{notation-chapter}

We freely assume the axiom of choice in this blueprint.

Expand Down
2 changes: 1 addition & 1 deletion blueprint/src/chapter/pythagorean_triples.tex
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
\chapter{The number of Pythagorean triples}
\chapter{The number of Pythagorean triples}\label{pythagorean-chapter}

\begin{definition}[Pythagorean triple exponent]\label{pythag-def} Let $\Pythag$ be the least exponent for which one has
$$ P(N) = c N^{1/2} - c' N^{1/3} + N^{\Pythag+o(1)}$$
Expand Down
2 changes: 1 addition & 1 deletion blueprint/src/chapter/zero_density.tex
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
\chapter{Zero density theorems}
\chapter{Zero density theorems}\label{zero-density-chapter}

\begin{definition}[Zero density exponents]\label{zero-def} For $\sigma \in \R$ and $T>0$, let $N(\sigma,T)$ denote the number of zeroes $\rho$ of the Riemann zeta function with $\mathrm{Re}(\rho) \geq \sigma$ and $|\mathrm{Im}(\rho)| \leq T$.

Expand Down
2 changes: 1 addition & 1 deletion blueprint/src/chapter/zero_density_energy.tex
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
\chapter{Zero density energy theorems}
\chapter{Zero density energy theorems}\label{zero-density-energy-chapter}


\begin{definition}[Zero density exponents]\label{zeroe-def} For $1/2 \leq \sigma \leq 1$ and $T>0$, let $N^*(\sigma,T)$ denote the additive energy $E_1(\Sigma)$ of the imaginary parts of the zeroes $\rho$ of the Riemann zeta function with $\mathrm{Re}(\rho) \geq \sigma$ and $|\mathrm{Im}(\rho)| \leq T$. For fixed $1/2 \leq \sigma \leq 1$, the zero density exponent $A^*(\sigma) \in [-\infty,\infty)$ is the infimum of all exponents $\A^*$ for which one has
Expand Down
2 changes: 1 addition & 1 deletion blueprint/src/chapter/zeta_growth.tex
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
\chapter{Growth exponents for the Riemann zeta function}
\chapter{Growth exponents for the Riemann zeta function}\label{zeta-growth-chapter}

\begin{definition}[Growth rate of zeta]\label{zeta-grow-def} For any fixed $\sigma \in \R$, let $\mu(\sigma)$ denote the least possible (fixed) exponent for which one has the bound
$$ |\zeta(\sigma+it)| \ll |t|^{\mu(\sigma)+o(1)}$$
Expand Down
2 changes: 1 addition & 1 deletion blueprint/src/chapter/zeta_large_values.tex
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
\chapter{Large value theorems for zeta partial sums}
\chapter{Large value theorems for zeta partial sums}\label{largevalue-zeta-chapter}

Now we study a variant of the exponent $\LV(\sigma,\tau)$, specialized to the Riemann zeta function.

Expand Down
2 changes: 1 addition & 1 deletion blueprint/src/chapter/zeta_moments.tex
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
\chapter{Moment growth for the zeta function}
\chapter{Moment growth for the zeta function}\label{zeta-moment-chapter}

\begin{definition}[Zeta moment exponents]\label{zeta-moment-def} For fixed $\sigma \in \R$ and $A \geq 0$, we define $M(\sigma,A)$ to be the least (fixed) exponent for which the bound
$$ \int_T^{2T} |\zeta(\sigma+it)|^A\ dt \ll T^{M(\sigma,A)+o(1)}$$
Expand Down
1 change: 1 addition & 0 deletions blueprint/src/python/examples.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@
import zero_density_estimate as zd
import zero_density_energy_estimate as ze
import zeta_large_values as zlv
from derived import *

# Temporary debugging functionality
import time
Expand Down

0 comments on commit daf173e

Please sign in to comment.