Created by Siyuan Huang, Siyuan Qi, Yinxue Xiao, Yixin Zhu, Ying Nian Wu, and Song-Chun Zhu from UCLA
This repository contains the code for our NeurIPS 2018 paper.
In this work, we propose an end-to-end model that simultaneously solves all the three scene understanding tasks in realtime given only a single RGB image, please refer to our project page for more details.
If you find our work inspiring or our code helpful in your research, please consider citing:
@inproceedings{huang2018cooperative,
title={Cooperative Holistic Scene Understanding: Unifying 3D Object, Layout, and Camera Pose Estimation},
author={Huang, Siyuan and Qi, Siyuan and Xiao, Yinxue and Zhu, Yixin and Wu, Ying Nian and Zhu, Song-Chun},
booktitle={Advances in Neural Information Processing Systems},
pages={206--217},
year={2018}
}
@inproceedings{huang2018holistic,
title={Holistic 3D scene parsing and reconstruction from a single RGB image},
author={Huang, Siyuan and Qi, Siyuan and Zhu, Yixin and Xiao, Yinxue and Xu, Yuanlu and Zhu, Song-Chun},
booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
pages={187--203},
year={2018}
}
pip install -r requirements.txt
-
Download the raw SUNRGBD data. Put it under metadata/SUNRGBD/Dataset/.
-
We preprocess the data from SUNRGBD dataset, the clean data can be downloaded from here. Put it under metadata/SUNRGBD/Dataset/.
-
Preprocessed ground truth of SUNRGBD dataset could be downloaded here. Put it under metadata/SUNRGBD/.
-
Prepare the training data by running:
python preprocess/sunrgbd/sunrgbd_process.py
We pretrained models for pose/layout estimation and bounding box estimation with the data generated by SUNCG dataset. The pretrained model can be downloaded here. Put it under metadata/SUNCG.
-
We provide several settings for training the proposed model. The best performance is gained by pretrained on SUNCG dataset and fine-tuned on SUNRGBD dataset which can be run by
sh scripts/sunrgbd_train_jointnet.sh
-
You could also fine-tune the posenet and bdbnet respectively by running
sh scripts/sunrgbd_fine_tune_bdbnet.sh
and
sh scripts/sunrgbd_fine_tune_posenet.sh
-
Train the posenet and bdbnet from scratch by
sh scripts/sunrgbd_train_bdbnet.sh
and sh scripts/sunrgbd_train_posenet.sh
Change the model path --model_path_pose and --model_path_bdb in test.py and run it for testing. The results will be saved automatically. It will also compute the 3D IoU and 2D IoU.
Download our trained model from here. Put it under metadata/sunrgbd/models_final.
Download SUNRGBD toolbox and put it under evaluation/SUNRGBDtoolbox.
-
Visualization
evaluation/vis/show_result.m
-
Layout estimation
evaluation/roomlayout/layout_evaluate.m
-
3D object detection
evaluation/detection/script_eval_detection.m
-
Holistic scene understanding
evaluation/holisticScene/evaluate_holistic.m
Our code is released under MIT license.
Please email [email protected] or open and issue if you have any questions.