A new two staged approach to Classify Hand sign (American Sign Language)
-
Domain : AI/ML in Support of Human Cognition
-
State : Review phase
The aim is to develope a method to classify hand sign from image efficiently and building a Realtime sign detector Application. Classical Hand sign detector models train directly from images and I have discovered that it negitively affects the realtime detection accuracy.
These are factors are :-
- Hand side [Left/Right]
- Skin color and birthmarks on hand
- Hand distance from camara
- Camara quality
- Hand angel
- Rapid movement
- Ambient lighting
- Background noise, color, movement
We have tried to eliminate this limitation with a different 2 staged approach.
- Python >3.8
- Jupyter Notebook or Lab
- git
- Clone the Repo
git clone https://github.com/tirtharajsinha/ASL-Classifier.git
cd ASL-Classifier
-
Get the dataset
-
Setup and active the virtual environment (Optional)
-
Setup the virtual environment (Optional/Recommended)
pip install virtualenv
virtualenv venv
./venv/Scripts/activate
- Install the python dependencies (Inside venv or on root)
pip install -r requirements.txt --user
Kaggle Link :- Dataset
- change the dataset path variable
PATH
with your local path. - Run the
ASL_dataset generator.ipynb
- Run the
ASL_keypoint_model_trainer.ipynb
- Run the
ASL_keypoint_detector.ipynb
- Run the
Model_tester.ipynb
python trackOnCam.py
git remote add upstream https://github.com/tirtharajsinha/ASL-Classifier.git
git fetch upstream
git checkout main
git merge upstream/main
git reset --hard origin/main
- Device : Dell inspiron 3543
- CPU : intel i3 5005U
- GPU : Intel HD grapics integrated
- RAM : Samsung 4GB DD3 SODIMM RAM
- HDD : Kingstone 480GB SSD
- OS : Windows 10 22H2 / Linux mint 20.3
- Language : Python3.9
- Package distributor : Anaconda
- IDE/interface : Jupyter Notebook
- CSV dataset Generate time : 292 Seconds
- Training time : 83.47s
- Accuracy : 95.25%
- Detectction time for One image : 62ms
Given hand Image | Detected Landmark | Detected hand gesture |
-- By Tirtharaj Sinha