-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
377bc91
commit 7911019
Showing
1 changed file
with
222 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,222 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
# pylint: disable=missing-function-docstring,missing-module-docstring | ||
import numpy as np | ||
import tvm | ||
import tvm.testing | ||
from tvm import tir | ||
from tvm.script import ty | ||
|
||
# pylint: disable=no-member,invalid-name,unused-variable | ||
|
||
|
||
@tvm.script.tir | ||
def transformed_matmul(a: ty.handle, b: ty.handle, c: ty.handle) -> None: | ||
A = tir.match_buffer(a, [128, 128]) | ||
B = tir.match_buffer(b, [128, 128]) | ||
C = tir.match_buffer(c, [128, 128]) | ||
|
||
for i0, i1, i2_outer, i2_inner_outer, i2_inner_inner in tir.grid(128, 128, 4, 8, 4): | ||
with tir.block([128, 128, tir.reduce_axis(0, 128)], "update") as [vi, vj, vk]: | ||
tir.bind(vi, i0) | ||
tir.bind(vj, i1) | ||
tir.bind(vk, (((i2_outer*32) + (i2_inner_outer*4)) + i2_inner_inner)) | ||
tir.reads([C[vi, vj], A[vi, vk], B[vj, vk]]) | ||
tir.writes([C[vi, vj]]) | ||
with tir.init(): | ||
C[vi, vj] = 0.0 | ||
C[vi, vj] = (C[vi, vj] + (A[vi, vk]*B[vj, vk])) | ||
|
||
|
||
@tvm.script.tir | ||
def matmul_rfactor(a: ty.handle, b: ty.handle, c: ty.handle) -> None: | ||
A = tir.match_buffer(a, [128, 128]) | ||
B = tir.match_buffer(b, [128, 128]) | ||
C = tir.match_buffer(c, [128, 128]) | ||
C_rf = tir.alloc_buffer([4, 128, 128]) | ||
|
||
for i0, i1, i2_outer, i2_inner_outer, i2_inner_inner in tir.grid(128, 128, 4, 8, 4): | ||
with tir.block([4, 128, 128, tir.reduce_axis(0, 4), tir.reduce_axis(0, 8)], "update_rf") as [vi2_inner_inner, vi, vj, vi2_outer, vi2_inner_outer]: | ||
tir.bind(vi2_inner_inner, i2_inner_inner) | ||
tir.bind(vi, i0) | ||
tir.bind(vj, i1) | ||
tir.bind(vi2_outer, i2_outer) | ||
tir.bind(vi2_inner_outer, i2_inner_outer) | ||
with tir.init(): | ||
C_rf[vi2_inner_inner, vi, vj] = 0.0 | ||
C_rf[vi2_inner_inner, vi, vj] = (C_rf[vi2_inner_inner, vi, vj] + (A[vi, (((vi2_outer*32) + (vi2_inner_outer*4)) + vi2_inner_inner)]*B[vj, (((vi2_outer*32) + (vi2_inner_outer*4)) + vi2_inner_inner)])) | ||
|
||
for i0_1, i1_1, i2_inner_inner_1 in tir.grid(128, 128, 4): | ||
with tir.block([128, 128, tir.reduce_axis(0, 4)], "update") as [vi_1, vj_1, vi2_inner_inner_1]: | ||
tir.bind(vi_1, i0_1) | ||
tir.bind(vj_1, i1_1) | ||
tir.bind(vi2_inner_inner_1, i2_inner_inner_1) | ||
with tir.init(): | ||
C[vi_1, vj_1] = 0.0 | ||
C[vi_1, vj_1] = (C[vi_1, vj_1] + C_rf[vi2_inner_inner_1, vi_1, vj_1]) | ||
|
||
|
||
@tvm.script.tir | ||
def square_sum(a: ty.handle, c: ty.handle) -> None: | ||
A = tir.match_buffer(a, [16, 256, 256]) | ||
C = tir.match_buffer(c, [16]) | ||
|
||
with tir.block([16, tir.reduce_axis(0, 256), tir.reduce_axis(0, 256)], "C") as [b, i, j]: | ||
with tir.init(): | ||
C[b] = 0.0 | ||
C[b] = C[b] + A[b, i, j] * A[b, i, j] | ||
|
||
|
||
@tvm.script.tir | ||
def square_sum_rfactor(a: ty.handle, c: ty.handle) -> None: | ||
A = tir.match_buffer(a, [16, 256, 256]) | ||
C = tir.match_buffer(c, [16]) | ||
C_rf = tir.alloc_buffer([16, 256]) | ||
|
||
for i0, i1, i2 in tir.grid(16, 256, 256): | ||
with tir.block([256, 16, tir.reduce_axis(0, 256)], "C_rf") as [vi2, b, i]: | ||
tir.bind(vi2, i2) | ||
tir.bind(b, i0) | ||
tir.bind(i, i1) | ||
with tir.init(): | ||
C_rf[b, vi2] = 0.0 | ||
C_rf[b, vi2] = (C_rf[b, vi2] + (A[b, i, vi2]*A[b, i, vi2])) | ||
|
||
for i0_1, i2_1 in tir.grid(16, 256): | ||
with tir.block([16, tir.reduce_axis(0, 256)], "C") as [b_1, vi2_1]: | ||
tir.bind(b_1, i0_1) | ||
tir.bind(vi2_1, i2_1) | ||
with tir.init(): | ||
C[b_1] = 0.0 | ||
C[b_1] = (C[b_1] + C_rf[b_1, vi2_1]) | ||
|
||
|
||
@tvm.script.tir | ||
def transformed_square_sum_square_root(a: ty.handle, d: ty.handle) -> None: | ||
A = tir.match_buffer(a, [16, 256, 256]) | ||
D = tir.match_buffer(d, [16]) | ||
C = tir.alloc_buffer([16]) | ||
|
||
for i0, i1_i2_fused_outer, i1_i2_fused_inner in tir.grid(16, 65536, 1): | ||
with tir.block([16, tir.reduce_axis(0, 256), tir.reduce_axis(0, 256)], "C") as [b, i, j]: | ||
tir.bind(b, i0) | ||
tir.bind(i, tir.floordiv(i1_i2_fused_outer, 256)) | ||
tir.bind(j, tir.floormod(i1_i2_fused_outer, 256)) | ||
tir.reads([C[b], A[b, i, j]]) | ||
tir.writes([C[b]]) | ||
with tir.init(): | ||
C[b] = 0.0 | ||
C[b] = (C[b] + (A[b, i, j]*A[b, i, j])) | ||
for i0_1 in tir.serial(0, 16): | ||
with tir.block([16], "D") as [b_1]: | ||
tir.bind(b_1, i0_1) | ||
tir.reads([C[b_1]]) | ||
tir.writes([D[b_1]]) | ||
D[b_1] = tir.sqrt(C[b_1], dtype="float32") | ||
|
||
|
||
@tvm.script.tir | ||
def square_sum_square_root_rfactor(a: ty.handle, d: ty.handle) -> None: | ||
A = tir.match_buffer(a, [16, 256, 256]) | ||
D = tir.match_buffer(d, [16]) | ||
C = tir.alloc_buffer([16]) | ||
C_rf = tir.alloc_buffer([1, 16]) | ||
|
||
for i0, i1_i2_fused_outer, i1_i2_fused_inner in tir.grid(16, 65536, 1): | ||
with tir.block([1, 16, tir.reduce_axis(0, 256), tir.reduce_axis(0, 256)], "C_rf") as [vi1_i2_fused_inner, b, i, j]: | ||
tir.bind(vi1_i2_fused_inner, i1_i2_fused_inner) | ||
tir.bind(b, i0) | ||
tir.bind(i, tir.floordiv(i1_i2_fused_outer, 256)) | ||
tir.bind(j, tir.floormod(i1_i2_fused_outer, 256)) | ||
with tir.init(): | ||
C_rf[vi1_i2_fused_inner, b] = 0.0 | ||
C_rf[vi1_i2_fused_inner, b] = (C_rf[vi1_i2_fused_inner, b] + (A[b, i, j]*A[b, i, j])) | ||
|
||
for i0_1, i1_i2_fused_inner_1 in tir.grid(16, 1): | ||
with tir.block([16, tir.reduce_axis(0, 1)], "C") as [b_1, vi1_i2_fused_inner_1]: | ||
tir.bind(b_1, i0_1) | ||
tir.bind(vi1_i2_fused_inner_1, i1_i2_fused_inner_1) | ||
with tir.init(): | ||
C[b_1] = 0.0 | ||
C[b_1] = (C[b_1] + C_rf[vi1_i2_fused_inner_1, b_1]) | ||
|
||
for i0_2 in tir.serial(0, 16): | ||
with tir.block([16], "D") as [b_2]: | ||
tir.bind(b_2, i0_2) | ||
D[b_2] = tir.sqrt(C[b_2], dtype="float32") | ||
|
||
|
||
# pylint: enable=no-member,invalid-name,unused-variable | ||
|
||
|
||
def test_reduction_rfactor_matmul(): | ||
s = tir.Schedule(transformed_matmul, debug_mode=True) | ||
C = s.get_block("update") | ||
_, _, _, _, kii = s.get_loops(C) | ||
rf_block = s.rfactor(kii, 0) | ||
tvm.ir.assert_structural_equal(s.mod["main"], matmul_rfactor) | ||
assert s.get(rf_block).same_as(s.get(s.get_block("update_rf"))) | ||
|
||
f = tvm.build(s.mod["main"], target="llvm") | ||
a_np = np.random.uniform(size=(128, 128)).astype("float32") | ||
b_np = np.random.uniform(size=(128, 128)).astype("float32") | ||
a = tvm.nd.array(a_np) | ||
b = tvm.nd.array(b_np) | ||
c = tvm.nd.array(np.zeros((128, 128), dtype="float32")) | ||
f(a, b, c) | ||
c_np = np.matmul(a_np, b_np.T) | ||
tvm.testing.assert_allclose(c.asnumpy(), c_np, rtol=1e-4, atol=1e-4) | ||
|
||
|
||
def test_reduction_rfactor_square_sum(): | ||
s = tir.Schedule(square_sum, debug_mode=True) | ||
C = s.get_block("C") | ||
_, _, j = s.get_loops(C) | ||
rf_block = s.rfactor(j, 1) | ||
tvm.ir.assert_structural_equal(s.mod["main"], square_sum_rfactor) | ||
assert s.get(rf_block).same_as(s.get(s.get_block("C_rf"))) | ||
|
||
f = tvm.build(s.mod["main"], target="llvm") | ||
a_np = np.random.uniform(size=(16, 256, 256)).astype("float32") | ||
a = tvm.nd.array(a_np) | ||
c = tvm.nd.array(np.zeros((16,), dtype="float32")) | ||
f(a, c) | ||
c_np = np.sum(a_np * a_np, axis=(1, 2)) | ||
tvm.testing.assert_allclose(c.asnumpy(), c_np, rtol=1e-4, atol=1e-4) | ||
|
||
|
||
def test_reduction_rfactor_square_sum_square_root(): | ||
s = tir.Schedule(transformed_square_sum_square_root, debug_mode=True) | ||
C = s.get_block("C") | ||
_, _, fi = s.get_loops(C) | ||
rf_block = s.rfactor(fi, 0) | ||
tvm.ir.assert_structural_equal(s.mod["main"], square_sum_square_root_rfactor) | ||
assert s.get(rf_block).same_as(s.get(s.get_block("C_rf"))) | ||
|
||
f = tvm.build(s.mod["main"], target="llvm") | ||
a_np = np.random.uniform(size=(16, 256, 256)).astype("float32") | ||
a = tvm.nd.array(a_np) | ||
c = tvm.nd.array(np.zeros((16,), dtype="float32")) | ||
f(a, c) | ||
c_np = np.sqrt(np.sum(a_np * a_np, axis=(1, 2))) | ||
tvm.testing.assert_allclose(c.asnumpy(), c_np, rtol=1e-4, atol=1e-4) | ||
|
||
|
||
if __name__ == "__main__": | ||
test_reduction_rfactor_matmul() | ||
test_reduction_rfactor_square_sum() | ||
test_reduction_rfactor_square_sum_square_root() |