You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
We'll use Python to build and evaluate several machine learning models to predict credit risk. Being able to predict credit risk with machine learning algorithms can help banks and financial institutions predict anomalies, reduce risk cases, monitor portfolios, and provide recommendations on what to do in cases of fraud.
Using machine learning to determine which model is best at predicting credit risk amongst random oversampling, SMOTE, ClusterCentroids, SMOTEENN, Balanced Random Forest, or Easy Ensemble Classifier (AdaBoost).
Determine supervised machine learning model that can accurately predict credit risk using python's sklearn library. Python, Pandas, imbalanced-learn, skikit-learn
Analyze of several Machine Learning techniques in order to help Jill decide on a most effective Machine Learning Model to analyze Credit Card Risk applications.
I am asked to resample the credit card data since it is not balanced. First, I start to split the data and perform oversampling with RandomOverSampler and SMOTE method, and I undersample with ClusterCentroids algorithm. Then, I utilize the SMOTEENN method to oversample and undersample the data. Finally, I used ensemble models.
Credit risk is an inherently unbalanced classification problem, as good loans easily outnumber risky loans. Therefore, you’ll need to employ different techniques to train and evaluate models with unbalanced classes. Using the credit card credit dataset from LendingClub, a peer-to-peer lending services company,