Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[FRONTEND] Support passing dtype as constexpr for tma load #4821

Merged
merged 2 commits into from
Sep 28, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 5 additions & 5 deletions python/test/unit/hopper/test_experimental_tma.py
Original file line number Diff line number Diff line change
Expand Up @@ -57,7 +57,7 @@ def kernel(Z, desc, SIZE: tl.constexpr, BYVAL_TMA: tl.constexpr):
@triton.jit
def matmul_kernel_tma(a_desc_ptr, b_desc_ptr, c_desc_ptr, #
M, N, K, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr,
BYVAL_TMA: tl.constexpr):
BYVAL_TMA: tl.constexpr, dtype: tl.constexpr):
if not BYVAL_TMA:
tl.extra.cuda.experimental_tensormap_fenceproxy_acquire(a_desc_ptr)
tl.extra.cuda.experimental_tensormap_fenceproxy_acquire(b_desc_ptr)
Expand All @@ -72,11 +72,11 @@ def matmul_kernel_tma(a_desc_ptr, b_desc_ptr, c_desc_ptr, #
offs_k = 0
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)):
a = tl._experimental_descriptor_load(a_desc_ptr, [offs_am, offs_k], [BLOCK_SIZE_M, BLOCK_SIZE_K], tl.float16)
b = tl._experimental_descriptor_load(b_desc_ptr, [offs_k, offs_bn], [BLOCK_SIZE_K, BLOCK_SIZE_N], tl.float16)
a = tl._experimental_descriptor_load(a_desc_ptr, [offs_am, offs_k], [BLOCK_SIZE_M, BLOCK_SIZE_K], dtype)
b = tl._experimental_descriptor_load(b_desc_ptr, [offs_k, offs_bn], [BLOCK_SIZE_K, BLOCK_SIZE_N], dtype)
accumulator = tl.dot(a, b, acc=accumulator)
offs_k += BLOCK_SIZE_K
accumulator = accumulator.to(tl.float16)
accumulator = accumulator.to(dtype)
tl._experimental_descriptor_store(c_desc_ptr, accumulator, [offs_am, offs_bn])


Expand All @@ -101,7 +101,7 @@ def test_experimental_tma_matmul(num_stages, BLOCK_M, BLOCK_N, BLOCK_K, byval_tm
desc_c = create_tma_desc_gmem_ptr(C.data_ptr(), [M, N], [BLOCK_M, BLOCK_N], C.element_size())
kernel = matmul_kernel_tma[(triton.cdiv(M, BLOCK_M) * triton.cdiv(N, BLOCK_N), 1,
1)](desc_a, desc_b, desc_c, M, N, K, BLOCK_M, BLOCK_N, BLOCK_K, BYVAL_TMA=byval_tma,
num_warps=8, num_stages=num_stages)
num_warps=8, num_stages=num_stages, dtype=tl.float16)
ref_out = torch.matmul(A.to(torch.float32), B.to(torch.float32)).to(torch.float16)
torch.testing.assert_close(ref_out, C, rtol=1e-3, atol=1e-3)
if BLOCK_M >= 64 and BLOCK_N >= 64:
Expand Down
2 changes: 1 addition & 1 deletion python/triton/language/core.py
Original file line number Diff line number Diff line change
Expand Up @@ -1613,7 +1613,7 @@ def _experimental_descriptor_load(desc_pointer, offsets, shape, dtype, _builder=
This loads a tensor of data based on the descriptor and offsets.
"""
type = block_type(dtype, shape)
type = block_type(_constexpr_to_value(dtype), shape)
return semantic.descriptor_load(desc_pointer, offsets, "", "", type, _builder)


Expand Down
Loading