This repo contains codes and data for the following paper:
Jiahao Li, Huandong Wang, Xinlei Chen*: Physics-informed NeuralODE for Post-disaster Mobility Recovery
The main environment requirements can be seen in requirements.txt
To run the training, testing and get the experimental result, just run
cd CDGON-KDD24
python main.py
The mobility data from Aug 1st - Sep 10th, 2019 in FL, GA and SC are collected in
./data
All data are organized into shapes like [T,N,N], representing T population mobility matrices, where diagonal elements represent intra-regional population flows and non-diagonal elements represent inter-regional population flows.
Supplementary materials, including proof of convergence of the key formula $\frac{\mathrm{d} r_i(t)}{\mathrm{d} t} = \alpha \frac{r_i(t)}{\overline{r_i}}[ \overline{r_i} - r_i(t)]$ , performance evaluation results of STGCN and CDGON, and hyper-parameter experimental results:
Theorem: In the formula $\frac{\mathrm{d} r_i(t)}{\mathrm{d} t} = \alpha \frac{r_i(t)}{\overline{r_i}}[ \overline{r_i} - r_i(t)]$ , $r_i(t)$ converges to $\overline{r_i}$ when $t \to \infty $ instead of oscillating perpetually around $\overline{r_i}$ .
Proof of Theorem:
The differential equation
which is a separable variable equation and we can have:
which can be integrated to obtain:
which can generate:
which satisfies:
which proves the theorem
Experiments Type | Metrics | STGCN | CDGON |
Performance Evaluation in FL | MAE | 62417.8359 | 59767.4805 |
R2 | 0.9909 | 0.9948 | |
NRMSE | 0.0954 | 0.0724 | |
Performance Evaluation in GA | MAE | 7082.8677 | 2013.2821 |
R2 | 0.9734 | 0.9977 | |
NRMSE | 0.1631 | 0.0475 | |
Performance Evaluation in in SC | MAE | 18133.7500 | 9040.6785 |
R2 | 0.9759 | 0.9941 | |
NRMSE | 0.1554 | 0.0771 | |
Hyper-parameter settings in CDGON
Embedding dimension: 48
edge loss weight $\lambda$: 100
Learning rate: 0.003
Experiment results on different embedding dimensions, where the other parameter settings are same as original paper.
Experiments Type | Metrics | 16 | 32 | 48 | 64 | 80 |
Performance Evaluation in FL | MAE | 65796.6484 | 31556.1035 | 59767.4805 | 38900.8594 | 16794.2266 |
R2 | 0.9817 | 0.9947 | 0.9948 | 0.9949 | 0.9993 | |
NRMSE | 0.1353 | 0.0728 | 0.0724 | 0.0711 | 0.0265 | |
Performance Evaluation in GA | MAE | 8596.8066 | 2476.3357 | 2013.2821 | 6726.749 | 2004.8026 |
R2 | 0.9 | 0.9965 | 0.9977 | 0.9649 | 0.9976 | |
NRMSE | 0.3162 | 0.0588 | 0.0475 | 0.1873 | 0.0493 | |
Performance Evaluation in in SC | MAE | 15904.1963 | 20676.6699 | 9040.6758 | 13369.793 | 35273.7461 |
R2 | 0.9814 | 0.9683 | 0.9941 | 0.9821 | 0.9332 | |
NRMSE | 0.1363 | 0.178 | 0.0771 | 0.134 | 0.2584 | |
Generalization FL -> GA | MAE | 8991.2666 | 5983.022 | 5433.7192 | 3936.6899 | 12559.5605 |
R2 | 0.9442 | 0.9704 | 0.9831 | 0.9852 | 0.8773 | |
NRMSE | 0.2363 | 0.1722 | 0.1301 | 0.1215 | 0.3502 | |
Generalization FL -> SC | MAE | 22449.4219 | 15979.0742 | 13609.5889 | 13573.167 | 32977.6367 |
R2 | 0.9525 | 0.9736 | 0.9773 | 0.9797 | 0.8973 | |
NRMSE | 0.218 | 0.1625 | 0.1508 | 0.1426 | 0.3204 | |
Generalization GA -> FL | MAE | 44399.207 | 46987.5703 | 48276.1992 | 40045.4766 | 57892.6836 |
R2 | 0.9901 | 0.9919 | 0.9901 | 0.9922 | 0.9863 | |
NRMSE | 0.0997 | 0.0898 | 0.0997 | 0.0881 | 0.1171 | |
Generalization GA -> SC | MAE | 14188.7959 | 16384.1875 | 14315.9375 | 12567.7197 | 13666.5508 |
R2 | 0.9721 | 0.9732 | 0.982 | 0.9847 | 0.9831 | |
NRMSE | 0.167 | 0.1637 | 0.1341 | 0.1235 | 0.13 | |
Generalization SC -> FL | MAE | 37216.1172 | 42591.7539 | 73204.6719 | 53571.0898 | 74730.8906 |
R2 | 0.9926 | 0.9916 | 0.9801 | 0.988 | 0.9782 | |
NRMSE | 0.0859 | 0.0916 | 0.1412 | 0.1095 | 0.1478 | |
Generalization SC -> GA | MAE | 4730.644 | 3934.5408 | 8921.1035 | 3830.97 | 11805.2217 |
R2 | 0.9785 | 0.9875 | 0.9687 | 0.9891 | 0.9456 | |
NRMSE | 0.1467 | 0.1117 | 0.177 | 0.1042 | 0.2331 | |
Experiment results on different $\lambda$ , where the other parameter settings are same as original paper.
Experiments | Metrics | 10 | 50 | 100 | 500 | 1000 |
Performance Evaluation in FL | MAE | 32522.3301 | 40861.3164 | 59767.4805 | 35012.9688 | 64905.2461 |
R2 | 0.994 | 0.9912 | 0.9948 | 0.9953 | 0.9866 | |
NRMSE | 0.0772 | 0.0939 | 0.0724 | 0.0686 | 0.116 | |
Performance Evaluation in GA | MAE | 43049.1211 | 4385.7549 | 2013.2821 | 7148.8594 | 5631.6104 |
R2 | 0.4618 | 0.9816 | 0.9977 | 0.9399 | 0.9876 | |
NRMSE | 0.7336 | 0.1357 | 0.0475 | 0.2452 | 0.1113 | |
Performance Evaluation in SC | MAE | 21663.9062 | 22532.2617 | 9040.6758 | 16925.8652 | 38515.3086 |
R2 | 0.9648 | 0.9658 | 0.9941 | 0.9674 | 0.8788 | |
NRMSE | 0.1875 | 0.1848 | 0.0771 | 0.1804 | 0.3481 | |
Generalization FL -> GA | MAE | 7073.2612 | 7787.6982 | 5433.7192 | 4014.4309 | 8322.3545 |
R2 | 0.9646 | 0.9603 | 0.9831 | 0.9835 | 0.9553 | |
NRMSE | 0.1882 | 0.1993 | 0.1301 | 0.1283 | 0.2114 | |
Generalization FL -> SC | MAE | 17733.6484 | 18547.4883 | 13609.5889 | 14024.291 | 21716.9141 |
R2 | 0.9692 | 0.9665 | 0.9773 | 0.9771 | 0.9559 | |
NRMSE | 0.1756 | 0.1832 | 0.1508 | 0.1513 | 0.2099 | |
Generalization GA -> FL | MAE | 44205.918 | 45013.5977 | 48276.1992 | 50217.8906 | 52088.3398 |
R2 | 0.9913 | 0.9912 | 0.9901 | 0.9889 | 0.9904 | |
NRMSE | 0.0932 | 0.0937 | 0.0997 | 0.1053 | 0.0979 | |
Generalization GA -> SC | MAE | 12889.4541 | 13916.4736 | 14315.9375 | 13024.3271 | 12746.8926 |
R2 | 0.9849 | 0.9823 | 0.982 | 0.986 | 0.986 | |
NRMSE | 0.1227 | 0.1329 | 0.1341 | 0.1185 | 0.1184 | |
Generalization SC -> FL | MAE | 67278.0703 | 80161.0156 | 73204.6719 | 54324.0898 | 69783.5703 |
R2 | 0.9834 | 0.9756 | 0.9801 | 0.9888 | 0.9717 | |
NRMSE | 0.1288 | 0.1561 | 0.1412 | 0.1058 | 0.1681 | |
Generalization SC -> GA | MAE | 5476.9692 | 14294.9346 | 8921.1035 | 3708.6938 | 9658.623 |
R2 | 0.9864 | 0.9228 | 0.9687 | 0.9922 | 0.9241 | |
NRMSE | 0.1166 | 0.2779 | 0.177 | 0.0881 | 0.2756 | |
Experiment results on different learning rates, where the other parameter settings are same as original paper.
Experiments | Metrics | 0.0001 | 0.0005 | 0.001 | 0.005 | 0.01 |
Performance Evaluation in FL | MAE | 529004.1875 | 34693.8633 | 33831.0703 | 36524.457 | 60011.1562 |
R2 | 0.1695 | 0.9975 | 0.9976 | 0.9984 | 0.9942 | |
NRMSE | 0.9113 | 0.0496 | 0.0488 | 0.0396 | 0.076 | |
Performance Evaluation in GA | MAE | 37850.4648 | 4462.7021 | 5688.2329 | 2161.2673 | 11902.7266 |
R2 | 0.003 | 0.9876 | 0.9777 | 0.9972 | 0.9387 | |
NRMSE | 0.9985 | 0.1112 | 0.1495 | 0.0526 | 0.2476 | |
Performance Evaluation in SC | MAE | 58461.9492 | 15060.959 | 18775.9277 | 32302.1719 | 19255.9629 |
R2 | 0.7281 | 0.9858 | 0.9748 | 0.9269 | 0.9672 | |
NRMSE | 0.5214 | 0.1194 | 0.1586 | 0.2703 | 0.1812 | |
Generalization FL -> GA | MAE | 46940.0625 | 39384.4102 | 6600.5337 | 4510.082 | 5471.5781 |
R2 | -0.3108 | 0.0531 | 0.9146 | 0.9828 | 0.9798 | |
NRMSE | 1.1449 | 0.9731 | 0.2923 | 0.1311 | 0.1421 | |
Generalization FL -> SC | MAE | 151936.8438 | 131516.125 | 19109.916 | 17394.168 | 15692.9873 |
R2 | -0.6068 | -0.2168 | 0.9596 | 0.9638 | 0.9707 | |
NRMSE | 1.2676 | 1.1031 | 0.201 | 0.1904 | 0.1712 | |
Generalization GA -> FL | MAE | 437491.4062 | 44095.7656 | 44387.4062 | 53430.0625 | 68644.3203 |
R2 | 0.2801 | 0.9919 | 0.9919 | 0.9883 | 0.9839 | |
NRMSE | 0.8485 | 0.0901 | 0.0897 | 0.1083 | 0.1271 | |
Generalization GA -> SC | MAE | 110432.5 | 14388.5625 | 13461.3564 | 13739.5166 | 14401.3418 |
R2 | 0.1196 | 0.9806 | 0.9821 | 0.9843 | 0.9798 | |
NRMSE | 0.9383 | 0.1392 | 0.1339 | 0.1254 | 0.142 | |
Generalization SC -> FL | MAE | 424390.75 | 47684.0977 | 90427.2734 | 84410.2734 | 83852.9453 |
R2 | 0.3208 | 0.9903 | 0.9352 | 0.968 | 0.9719 | |
NRMSE | 0.8241 | 0.0984 | 0.2547 | 0.1788 | 0.1676 | |
Generalization SC -> GA | MAE | 29812.2109 | 7731.0142 | 5788.4355 | 6306.5957 | 7316.2769 |
R2 | 0.4087 | 0.9602 | 0.9809 | 0.97 | 0.9542 | |
NRMSE | 0.769 | 0.1995 | 0.1382 | 0.1732 | 0.214 | |