Skip to content

Code repository for Frontiers article 'Generative Adversarial Networks for Image-to-Image Translation on Multi-Contrast MR Images - A Comparison of CycleGAN and UNIT'

License

Notifications You must be signed in to change notification settings

ucmmesa/GAN-MRI

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Generative Adversarial Networks for Image-to-Image Translation on Multi-Contrast MR Images - A Comparison of CycleGAN and UNIT

Code usage

  1. Prepare your dataset under the directory 'data' in the CycleGAN or UNIT folder and set dataset name to parameter 'image_folder' in model init function.
  • Directory structure on new dataset needed for training and testing:
    • data/Dataset-name/trainA
    • data/Dataset-name/trainB
    • data/Dataset-name/testA
    • data/Dataset-name/testB
  1. Train a model by:
python CycleGAN.py

or

python UNIT.py
  1. Generate synthetic images by following specifications under:
  • CycleGAN/generate_images/ReadMe.md
  • UNIT/generate_images/ReadMe.md

Result GIFs - 304x256 pixel images

Left: Input image. Middle: Synthetic images generated during training. Right: Ground truth.
Histograms show pixel value distributions for synthetic images (blue) compared to ground truth (brown).

CycleGAN - T1 to T2

CycleGAN - T2 to T1

UNIT - T1 to T2

UNIT - T2 to T1

About

Code repository for Frontiers article 'Generative Adversarial Networks for Image-to-Image Translation on Multi-Contrast MR Images - A Comparison of CycleGAN and UNIT'

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%