Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

YOLOv5 v5.0 Release #2762

Merged
merged 1 commit into from
Apr 11, 2021
Merged

YOLOv5 v5.0 Release #2762

merged 1 commit into from
Apr 11, 2021

Conversation

glenn-jocher
Copy link
Member

@glenn-jocher glenn-jocher commented Apr 11, 2021

This release implements YOLOv5-P6 models and retrained YOLOv5-P5 models:

  • YOLOv5-P5 models (same architecture as v4.0 release): 3 output layers P3, P4, P5 at strides 8, 16, 32, trained at --img 640
  • YOLOv5-P6 models: 4 output layers P3, P4, P5, P6 at strides 8, 16, 32, 64 trained at --img 1280

Example usage:

# Command Line
python detect.py --weights yolov5m.pt --img 640  # P5 model at 640
python detect.py --weights yolov5m6.pt --img 640  # P6 model at 640
python detect.py --weights yolov5m6.pt --img 1280  # P6 model at 1280
# PyTorch Hub
model = torch.hub.load('ultralytics/yolov5', 'yolov5m6')  #  P6 model
results = model(imgs, size=1280)  # inference at 1280

All model sizes YOLOv5s/m/l/x are now available in P5 and P6 architectures:

python detect.py --weights yolov5s.pt  # P5 models
                           yolov5m.pt
                           yolov5l.pt
                           yolov5x.pt
                           yolov5s6.pt  # P6 models
                           yolov5m6.pt
                           yolov5l6.pt
                           yolov5x6.pt

Notable Updates

Updated Results

P6 models include an extra P6/64 output layer for detection of larger objects, and benefit the most from training at higher resolution. For this reason we trained all P5 models at 640, and all P6 models at 1280.

YOLOv5-P5 640 Figure (click to expand)

Figure Notes (click to expand)
  • GPU Speed measures end-to-end time per image averaged over 5000 COCO val2017 images using a V100 GPU with batch size 32, and includes image preprocessing, PyTorch FP16 inference, postprocessing and NMS.
  • EfficientDet data from google/automl at batch size 8.

Pretrained Checkpoints

Model size
(pixels)
mAPval
0.5:0.95
mAPtest
0.5:0.95
mAPval
0.5
Speed
V100 (ms)
params
(M)
FLOPS
640 (B)
YOLOv5s 640 36.7 36.7 55.4 2.0 7.3 17.0
YOLOv5m 640 44.5 44.5 63.3 2.7 21.4 51.3
YOLOv5l 640 48.2 48.2 66.9 3.8 47.0 115.4
YOLOv5x 640 50.4 50.4 68.8 6.1 87.7 218.8
YOLOv5s6 1280 43.3 43.3 61.9 4.3 12.7 17.4
YOLOv5m6 1280 50.5 50.5 68.7 8.4 35.9 52.4
YOLOv5l6 1280 53.4 53.4 71.1 12.3 77.2 117.7
YOLOv5x6 1280 54.4 54.4 72.0 22.4 141.8 222.9
YOLOv5x6 TTA 1280 55.0 55.0 72.0 70.8 - -
Table Notes (click to expand)
  • APtest denotes COCO test-dev2017 server results, all other AP results denote val2017 accuracy.
  • AP values are for single-model single-scale unless otherwise noted. Reproduce mAP by python test.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65
  • SpeedGPU averaged over 5000 COCO val2017 images using a GCP n1-standard-16 V100 instance, and includes FP16 inference, postprocessing and NMS. Reproduce speed by python test.py --data coco.yaml --img 640 --conf 0.25 --iou 0.45
  • All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation).
  • Test Time Augmentation (TTA) includes reflection and scale augmentation. Reproduce TTA by python test.py --data coco.yaml --img 1536 --iou 0.7 --augment

Changelog

Changes between previous release and this release: v4.0...v5.0
Changes since this release: v5.0...HEAD

Click a section below to expand details:

Implemented Enhancements (26)
  • Return predictions as json #2703
  • Single channel image training? #2609
  • Images in MPO Format are considered corrupted #2446
  • Improve Validation Visualization #2384
  • Add ASFF (three fuse feature layers) int the Head for V5(s,m,l,x) #2348
  • Dear author, can you provide a visualization scheme for YOLOV5 feature graphs during detect.py? Thank you! #2259
  • Dataloader #2201
  • Update Train Custom Data wiki page #2187
  • Multi-class NMS #2162
  • 💡Idea: Mosaic cropping using segmentation labels #2151
  • Improving Confusion Matrix Interpretability: FP and FN vectors should be switched to align with Predicted and True axis #2071
  • Interpreting model YoloV5 by Grad-cam #2065
  • Output optimal confidence threshold based on PR curve #2048
  • is it valuable that add --cache-images option to detect.py? #2004
  • I want to change the anchor box to anchor circles, where do you think the change to be made ? #1987
  • Support for imgaug #1954
  • Any plan for Knowledge Distillation? #1762
  • Is there a wasy to run detections on a video/webcam/rtrsp, etc EVERY x SECONDS? #1742
  • Can yolov5 support rotated target detection? #1728
  • Deploying yolov5 to TorchServe (GPU compatible) #1681
  • Why diffrent colors of bboxs? #1638
  • Yet another export yolov5 models to ONNX and inference with TensorRT #1597
  • Rerange the blocks of Focus Layer into row major to be compatible with tensorflow SpaceToDepth #413
  • YouTube Livestream Detection #2752 (ben-milanko)
  • Add TransformerLayer, TransformerBlock, C3TR modules #2333 (dingyiwei)
  • Improved W&B integration #2125 (AyushExel)
Fixed Bugs (73)
  • it seems that check_wandb_resume don't support multiple input files of images. #2716
  • ip camera or web camera. error: (-215:Assertion failed) !ss ize.empty() in function 'cv::resize' #2709
  • Model predict with forward will fail if PIL image does not have filename attribute #2702
  • ❔Question Whenever i try to run my model i run into this error AttributeError: 'NoneType' object has no attribute 'startswith' from wandbutils.py line 161 I wonder why ? Any workaround or fix #2697
  • coremltools no longer included in docker container #2686
  • 'LoadImages' path handling appears to be broken #2618
  • CUDA memory leak #2586
  • UnboundLocalError: local variable 'wandb_logger' referenced before assignment #2562
  • RuntimeError: CUDA error: CUBLAS_STATUS_INTERNAL_ERROR when calling cublasCreate\(handle\) #2417
  • CUDNN Mapping Error #2415
  • Can't train in DDP mode after recent update #2405
  • a bug about function bbox_iou() #2376
  • Training got stuck when I used DistributedDataParallel mode but dataParallel mode is useful #2375
  • Something wrong with fixing ema #2343
  • Conversion to CoreML fails when running with --batch 2 #2322
  • The "fitness" function in train.py. #2303
  • Error "Directory already existed" happen when training with multiple GPUs #2275
  • self.balance = {3: [4.0, 1.0, 0.4], 4: [4.0, 1.0, 0.25, 0.06], 5: [4.0, 1.0, 0.25, 0.06, .02]}[det.nl] #2255
  • Cannot run model with URL as argument #2246
  • Yolov5 crashes with RTSP stream analysis #2226
  • interruption during evolve #2218
  • I am a student of Tsinghua University, doing research in Tencent. When I train with yolov5, the following problems appear,Sincerely hope to get help, #2203
  • Frame Loss in video stream #2196
  • wandb.ai not logging epochs vs metrics/losses instead uses step #2175
  • Evolve is leaking files #2142
  • Issue in torchscript model inference #2129
  • RuntimeError: CUDA error: device-side assert triggered #2124
  • In 'evolve' mode, If the original hyp is 0, It will never update #2122
  • Caching image path #2121
  • can't convert cuda:0 device type tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first #2106
  • Error in creating model with Ghost modules #2081
  • TypeError: int() can't convert non-string with explicit base #2066
  • [Pytorch Hub] Hub CI is broken with latest master of yolo5 example. #2050
  • Problems when downloading requirements #2047
  • detect.py - images always saved #2029
  • thop and pycocotools shouldn't be hard requirements to train a model #2014
  • CoreML export failure #2007
  • loss function like has a bug #1988
  • CoreML export failure: unexpected number of inputs for node x.2 (_convolution): 13 #1945
  • torch.nn.modules.module.ModuleAttributeError: 'Hardswish' object has no attribute 'inplace' #1939
  • runs not logging separately in wandb.ai #1937
  • wrong batch size after --resume on multiple GPUs #1936
  • TypeError: int() can't convert non-string with explicit base #1927
  • RuntimeError: DataLoader worker #1908
  • Unable to export weights into onnx #1900
  • CUDA Initialization Warning on Docker when not passing in gpu #1891
  • Issue with github api rate limiting #1890
  • wandb: ERROR Error while calling W&B API: Error 1062: Duplicate entry '189160-gbp6y2en' for key 'PRIMARY' (<Response [409]>) #1878
  • Broken pipe #1859
  • detection.py #1858
  • Getting error on loading custom trained model #1856
  • W&B id is always the same and continue with the old logging. #1851
  • pytorch1.7 is not completely support.'inplace'! 'inplace'! 'inplace'! #1832
  • Validation errors are NaN #1804
  • Error Loading custom model weights with pytorch.hub.load #1788
  • 'cap' object is not self. initialized #1781
  • ValueError: API key must be 40 characters long, yours was 1 #1777
  • scipy #1766
  • error of missing key 'anchors' in hyp.scratch.yaml #1744
  • mss grab color conversion problem using TorchHub #1735
  • Video rotation when running detection. #1725
  • RuntimeError: CUDA out of memory. Tried to allocate 294.00 MiB (GPU 0; 6.00 GiB total capacity; 118.62 MiB already allocated; 4.20 GiB free; 362.00 MiB reserved in total by PyTorch) #1698
  • Errors on MAC #1690
  • RuntimeError: DataLoader worker (pid(s) 296430) exited unexpectedly #1675
  • Non-positive Stride #1671
  • gbk error. How can I solve it? #1669
  • CoreML export failure: unexpected number of inputs for node x.2 (_convolution): 13 #1667
  • RuntimeError: Given groups=1, weight of size [32, 128, 1, 1], expected input[1, 64, 32, 32] to have 128 channels, but got 64 channels instead #1627
  • segmentation fault #1620
  • Getting different output sizes when using exported torchscript #1562
  • some bugs when training #1547
  • Evolve getting error #1319
  • AssertionError: Image Not Found ../dataset/images/train/4501.jpeg #195
Closed Issues (42)
  • Can feed tensor the model #2722
  • hello, everyone, In order to modify the network more conveniently based on this rep., I restructure the network part, which is divided into backbone, neck, head #2710
  • Differentiate between normal banner and LED banner #2647
  • 👋 Hello @Wilson-inclaims, thank you for your interest in 🚀 YOLOv5! Please visit our ⭐️ [Tutorials](https://github.com/ultralytics/yolov5/wiki\#tutorials\) to get started, where you can find quickstart guides for simple tasks like [Custom Data Training](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data\) all the way to advanced concepts like [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607\). #2516
  • I got a runtimerror when I run classifier.py to train my own dataset. #2438
  • RuntimeError: a view of a leaf Variable that requires grad is being used in an in-place operation. #2403
  • 🌟💡 YOLOv5 Study: batch size #2377
  • export.py export onnx for gpu failed #2365
  • in _ddp_init_helper expect_sparse_gradient) RuntimeError: Model replicas must have an equal number of parameters. #2311
  • Custom dataset training using YOLOv5 #2296
  • label format #2293
  • MAP NOT PRINTING #2283
  • Why didn't I get results in my video test? #2277
  • Label Missing: for images and labels... 203 found, 50 missing, 0 empty, 0 corrupted: 100% #2268
  • Pytorch Hub inference returns different results than detect.py #2224
  • yolov5x train.py error #2181
  • degrees is radians? #2160
  • AssertionError: Image Not Found #2130
  • How to load custom trained model to detect sample image? #2097
  • YOLOv5 installed failed on Macbook M1 #2075
  • How to set the number of seconds to detect once #2072
  • Where the changes should be made to detect horizontal line and vertical lines? Can anyone discus elaborately? #2070
  • Video inference stops after a certain number of frames #2064
  • Can't YOLOV5 be detected with multithreading? #1979
  • I want to make a images file what divided images in test.py #1931
  • different image size w/ torchscript windows c++ #1920
  • run detect the result ,the Image don't have box #1910
  • resume problem #1884
  • Detect source as .txt error #1877
  • yolov5 v4.0 tensorrt deployment #1874
  • Hyperparameter Evolution: load dataset every time #1864
  • Caching images problem #1862
  • About Release v4.0 #1841
  • @Glenn best practices for running trained YOLOv5 models in new python environments is to use PyTorch Hub. See PyTorch Hub Tutorial: #1789
  • yolov5x.pt is not compatible with ./models/yolov5x.yam #1721
  • Parameter '--device' doesn't work! #1706
  • Thank you for your issue! #1687
  • Convert the label format #1652
  • Autorun not working #1599
  • When model.model[-1]. export = False in export.py, coreml export failing. Please check. #1491
  • Error 'AttributeError: 'str' object has no attribute 'get'' at running train.py #1479
  • Docker image is not working, torch.nn.modules.module.ModuleAttributeError: 'Hardswish' object has no attribute 'inplace' #1327
Merged Pull Requests (172)

🛠️ PR Summary

Made with ❤️ by Ultralytics Actions

🌟 Summary

Enhancements and clarifications in YOLOv5 documentation and models.

📊 Key Changes

  • Updated the main image in the README.md to a new one, and added an expandable section featuring the YOLOv5-P5 640 model figure.
  • Provided a command for reproducing study results directly in the documentation.
  • Noted the v5.0 release, which included new YOLOv5-P6 1280 model variants and integrations with AWS, Supervise.ly, and YouTube.
  • Adjusted pretrained checkpoints table to streamline model details and added new performance stats for the models, including a new YOLOv5s6 variant.
  • Simplified and updated the detect.py description to clarify that it downloads models from the latest release and saves results to a specific path.
  • Refactored the hubconf.py by moving the custom function and updating the create functions for each model variant to be more succinct and focus on creation and configuration.
  • Updated the plot_study_txt function in utils/plots.py to fix the plotting range and updated the reference to the YOLOv5s6 model family.

🎯 Purpose & Impact

  • Documentation: Improves understanding of the repository's capabilities and recent changes, making it easier for both users and contributors to engage with the project.
  • Model Performance: The new model stats and variants expand the options for users, allowing better performance tuning for different computational environments.
  • Code Clarity: The cleanup in hubconf.py makes it easier for developers to understand the structure of model loading and instantiation.
  • Visualization Updates: Adjustments to the plotting functions aid in better visual representation of model performances.
  • Overall Impact: The PR will potentially increase user adoption and improve the user experience by providing clear, updated information and better-performing models.

@glenn-jocher glenn-jocher added the enhancement New feature or request label Apr 11, 2021
@glenn-jocher glenn-jocher merged commit f5b8f7d into master Apr 11, 2021
@glenn-jocher glenn-jocher deleted the v5 branch April 11, 2021 17:23
@AyushExel
Copy link
Contributor

Awesome 😎

@Edwardmark
Copy link

@glenn-jocher What does the B in flops mean?

@glenn-jocher
Copy link
Member Author

glenn-jocher commented Apr 16, 2021

@Edwardmark M for Million (1E6) and B for Billion (1E9), i.e. 1 Billion FLOPS or 1 GFLOP

KMint1819 pushed a commit to KMint1819/yolov5 that referenced this pull request May 12, 2021
mkolomeychenko added a commit to supervisely-ecosystem/yolov5 that referenced this pull request May 17, 2021
* Update yolo.py with yaml.SafeLoader (ultralytics#1970)

* Update autoanchor.py with yaml.SafeLoader (ultralytics#1971)

* Update train.py with yaml.SafeLoader (ultralytics#1972)

* check_git_status() asserts (ultralytics#1977)

* Update Dockerfile (ultralytics#1982)

* Add xywhn2xyxy() (ultralytics#1983)

* verbose on final_epoch (ultralytics#1997)

* check_git_status() Windows fix (ultralytics#2015)

* check_git_status() Windows fix

* Update general.py

* Update general.py

* Update general.py

* Update general.py

* Update general.py

* Update general.py

* Update Dockerfile (ultralytics#2016)

* Update google_utils.py (ultralytics#2017)

* Update ci-testing.yml (ultralytics#2018)

* Update inference multiple-counting (ultralytics#2019)

* Update inference multiple-counting

* update github check

* Update general.py check_git_status() fix (ultralytics#2020)

* Update autoshape .print() and .save() (ultralytics#2022)

* Update requirements.txt (ultralytics#2021)

* Update requirements.txt

* Update ci-testing.yml

* Update hubconf.py

* PyYAML==5.4.1 (ultralytics#2030)

* Docker pyYAML>=5.3.1 fix (ultralytics#2031)

* data-autodownload background tasks (ultralytics#2034)

* Check im.format during dataset caching (ultralytics#2042)

* Check im.format during dataset caching

* Update datasets.py

* Confusion matrix native image-space fix (ultralytics#2046)

Make sure the labels and predictions are equally scaled on confusion_matrix.process_batch

* Add histogram equalization fcn (ultralytics#2049)

* W&B log epoch (ultralytics#1946)

* W&B log epoch

* capitalize

* W&B log epoch

* capitalize

* Update train.py

New try using https://docs.wandb.ai/library/log#incremental-logging

* Update train.py

* Update test.py

* Update train.py

* Update plots.py

* Update train.py

* Update train.py

* label plot step -1

* update

* update

* update

* update

* update

* update

* Update train.py

* Update train.py

* Add 'exclude' tuple to check_requirements() (ultralytics#2041)

* Update run-once lines (ultralytics#2058)

* Metric-Confidence plots feature addition (ultralytics#2057)

* Metric-Confidence plots feature addition

* cleanup

* Metric-Confidence plots feature addition

* cleanup

* Update run-once lines

* cleanup

* save all 4 curves to wandb

* Update to colors.TABLEAU_COLORS (ultralytics#2069)

* W&B epoch logging update (ultralytics#2073)

* GhostConv update (ultralytics#2082)

* Add YOLOv5-P6 models (ultralytics#2083)

* Update tutorial.ipynb

* Add Amazon Deep Learning AMI environment (ultralytics#2085)

* Update greetings.yml

* Update README.md

* Add Kaggle badge (ultralytics#2090)

* Update README.md

* Update greetings.yml

* Created using Colaboratory

* Add Kaggle badge (ultralytics#2090)

* Add variable-stride inference support (ultralytics#2091)

* Update test.py --task speed and study (ultralytics#2099)

* Add --speed benchmark

* test range 256 - 1536

* update

* update

* update

* update

* Update plot_study() (ultralytics#2112)

* Start setup for improved W&B integration (ultralytics#1948)

* Add helper functions for wandb and artifacts

* cleanup

* Reorganize files

* Update wandb_utils.py

* Update log_dataset.py

We can remove this code, as the giou hyp has been deprecated for a while now.

* Reorganize and update dataloader call

* yaml.SafeLoader

* PEP8 reformat

* remove redundant checks

* Add helper functions for wandb and artifacts

* cleanup

* Reorganize files

* Update wandb_utils.py

* Update log_dataset.py

We can remove this code, as the giou hyp has been deprecated for a while now.

* Reorganize and update dataloader call

* yaml.SafeLoader

* PEP8 reformat

* remove redundant checks

* Update util files

* Update wandb_utils.py

* Remove word size

* Change path of labels.zip

* remove unused imports

* remove --rect

* log_dataset.py cleanup

* log_dataset.py cleanup2

* wandb_utils.py cleanup

* remove redundant id_count

* wandb_utils.py cleanup2

* rename cls

* use pathlib for zip

* rename dataloader to dataset

* Change import order

* Remove redundant code

* remove unused import

* remove unused imports

Co-authored-by: Glenn Jocher <[email protected]>

* LoadImages() pathlib update (ultralytics#2140)

* Unique *.cache filenames fix (ultralytics#2134)

* fix ultralytics#2121

* Update test.py

* Update train.py

* Update autoanchor.py

* Update datasets.py

* Update log_dataset.py

* Update datasets.py

Co-authored-by: Glenn Jocher <[email protected]>

* Update train.py test batch_size (ultralytics#2148)

* Update train.py

* Update loss.py

* Update train.py (ultralytics#2149)

* Linear LR scheduler option (ultralytics#2150)

* Linear LR scheduler option

* Update train.py

* Update data-autodownload background tasks (ultralytics#2154)

* Update get_coco.sh

* Update get_voc.sh

* Update detect.py (ultralytics#2167)

Without this cv2.imshow opens a window but nothing is visible

* Update requirements.txt (ultralytics#2173)

* Update utils/datasets.py to support .webp files (ultralytics#2174)

Simply added 'webp' as an image format to the img_formats array so that webp image files can be used as training data.

* Changed socket port and added timeout (ultralytics#2176)

* PyTorch Hub results.save('path/to/dir') (ultralytics#2179)

* YOLOv5 Segmentation Dataloader Updates (ultralytics#2188)

* Update C3 module

* Update C3 module

* Update C3 module

* Update C3 module

* update

* update

* update

* update

* update

* update

* update

* update

* update

* updates

* updates

* updates

* updates

* updates

* updates

* updates

* updates

* updates

* updates

* update

* update

* update

* update

* updates

* updates

* updates

* updates

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update datasets

* update

* update

* update

* update attempt_downlaod()

* merge

* merge

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* parameterize eps

* comments

* gs-multiple

* update

* max_nms implemented

* Create one_cycle() function

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* GitHub API rate limit fix

* update

* ComputeLoss

* ComputeLoss

* ComputeLoss

* ComputeLoss

* ComputeLoss

* ComputeLoss

* ComputeLoss

* ComputeLoss

* ComputeLoss

* ComputeLoss

* ComputeLoss

* astuple

* epochs

* update

* update

* ComputeLoss()

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* merge

* merge

* merge

* merge

* update

* update

* update

* update

* commit=tag == tags[-1]

* Update cudnn.benchmark

* update

* update

* update

* updates

* updates

* updates

* updates

* updates

* updates

* updates

* update

* update

* update

* update

* update

* mosaic9

* update

* update

* update

* update

* update

* update

* institute cache versioning

* only display on existing cache

* reverse cache exists booleans

* Created using Colaboratory

* YOLOv5 PyTorch Hub results.save() method retains filenames (ultralytics#2194)

* save results with name

* debug

* save original imgs names

* Update common.py

Co-authored-by: Glenn Jocher <[email protected]>

* TTA augument boxes one pixel shifted in de-flip ud and lr (ultralytics#2219)

* TTA augument boxes one pixel shifted in de-flip ud and lr

* PEP8 reformat

Co-authored-by: Jaap van de Loosdrecht <[email protected]>
Co-authored-by: Glenn Jocher <[email protected]>

* LoadStreams() frame loss bug fix (ultralytics#2222)

* Update yolo.py channel array (ultralytics#2223)

* Add check_imshow() (ultralytics#2231)

* Add check_imshow()

* Update general.py

* Update general.py

* Update CI badge (ultralytics#2230)

* Add isdocker() (ultralytics#2232)

* Add isdocker()

* Update general.py

* Update general.py

* YOLOv5 Hub URL inference bug fix (ultralytics#2250)

* Update common.py

* Update common.py

* Update common.py

* Improved hubconf.py CI tests (ultralytics#2251)

* Unified hub and detect.py box and labels plotting (ultralytics#2243)

* reset head

* Update inference default to multi_label=False (ultralytics#2252)

* Update inference default to multi_label=False

* bug fix

* Update plots.py

* Update plots.py

* Robust objectness loss balancing (ultralytics#2256)

* Created using Colaboratory

* Update minimum stride to 32 (ultralytics#2266)

* Dynamic ONNX engine generation (ultralytics#2208)

* add: dynamic onnx export

* delete: test onnx inference

* fix dynamic output axis

* Code reduction

* fix: dynamic output axes, dynamic input naming

* Remove fixed axes

Co-authored-by: Shivam Swanrkar <[email protected]>
Co-authored-by: Glenn Jocher <[email protected]>

* Update greetings.yml for auto-rebase on PR (ultralytics#2272)

* Update Dockerfile with apt install zip (ultralytics#2274)

* FLOPS min stride 32 (ultralytics#2276)

Signed-off-by: xiaowo1996 <[email protected]>

* Update README.md

* Amazon AWS EC2 startup and re-startup scripts (ultralytics#2185)

* Amazon AWS EC2 startup and re-startup scripts

* Create resume.py

* cleanup

* Amazon AWS EC2 startup and re-startup scripts (ultralytics#2282)

* Update train.py (ultralytics#2290)

* Update train.py

* Update train.py

* Update train.py

* Update train.py

* Create train.py

* Improved model+EMA checkpointing (ultralytics#2292)

* Enhanced model+EMA checkpointing

* update

* bug fix

* bug fix 2

* always save optimizer

* ema half

* remove model.float()

* model half

* carry ema/model in fp32

* rm model.float()

* both to float always

* cleanup

* cleanup

* Improved model+EMA checkpointing 2 (ultralytics#2295)

* Fix labels being missed when image extension appears twice in filename (ultralytics#2300)

* W&B entity support (ultralytics#2298)

* W&B entity support

* shorten wandb_entity to entity

Co-authored-by: Jan Hajek <[email protected]>
Co-authored-by: Glenn Jocher <[email protected]>

* Update yolo.py (ultralytics#2120)

* Avoid mutable state in Detect

* LoadImages() pathlib update (ultralytics#2140)

* Unique *.cache filenames fix (ultralytics#2134)

* fix ultralytics#2121

* Update test.py

* Update train.py

* Update autoanchor.py

* Update datasets.py

* Update log_dataset.py

* Update datasets.py

Co-authored-by: Glenn Jocher <[email protected]>

* Update train.py test batch_size (ultralytics#2148)

* Update train.py

* Update loss.py

* Update train.py (ultralytics#2149)

* Linear LR scheduler option (ultralytics#2150)

* Linear LR scheduler option

* Update train.py

* Update data-autodownload background tasks (ultralytics#2154)

* Update get_coco.sh

* Update get_voc.sh

* Update detect.py (ultralytics#2167)

Without this cv2.imshow opens a window but nothing is visible

* Update requirements.txt (ultralytics#2173)

* Update utils/datasets.py to support .webp files (ultralytics#2174)

Simply added 'webp' as an image format to the img_formats array so that webp image files can be used as training data.

* Changed socket port and added timeout (ultralytics#2176)

* PyTorch Hub results.save('path/to/dir') (ultralytics#2179)

* YOLOv5 Segmentation Dataloader Updates (ultralytics#2188)

* Update C3 module

* Update C3 module

* Update C3 module

* Update C3 module

* update

* update

* update

* update

* update

* update

* update

* update

* update

* updates

* updates

* updates

* updates

* updates

* updates

* updates

* updates

* updates

* updates

* update

* update

* update

* update

* updates

* updates

* updates

* updates

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update datasets

* update

* update

* update

* update attempt_downlaod()

* merge

* merge

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* parameterize eps

* comments

* gs-multiple

* update

* max_nms implemented

* Create one_cycle() function

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* GitHub API rate limit fix

* update

* ComputeLoss

* ComputeLoss

* ComputeLoss

* ComputeLoss

* ComputeLoss

* ComputeLoss

* ComputeLoss

* ComputeLoss

* ComputeLoss

* ComputeLoss

* ComputeLoss

* astuple

* epochs

* update

* update

* ComputeLoss()

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* merge

* merge

* merge

* merge

* update

* update

* update

* update

* commit=tag == tags[-1]

* Update cudnn.benchmark

* update

* update

* update

* updates

* updates

* updates

* updates

* updates

* updates

* updates

* update

* update

* update

* update

* update

* mosaic9

* update

* update

* update

* update

* update

* update

* institute cache versioning

* only display on existing cache

* reverse cache exists booleans

* Created using Colaboratory

* YOLOv5 PyTorch Hub results.save() method retains filenames (ultralytics#2194)

* save results with name

* debug

* save original imgs names

* Update common.py

Co-authored-by: Glenn Jocher <[email protected]>

* TTA augument boxes one pixel shifted in de-flip ud and lr (ultralytics#2219)

* TTA augument boxes one pixel shifted in de-flip ud and lr

* PEP8 reformat

Co-authored-by: Jaap van de Loosdrecht <[email protected]>
Co-authored-by: Glenn Jocher <[email protected]>

* LoadStreams() frame loss bug fix (ultralytics#2222)

* Update yolo.py channel array (ultralytics#2223)

* Add check_imshow() (ultralytics#2231)

* Add check_imshow()

* Update general.py

* Update general.py

* Update CI badge (ultralytics#2230)

* Add isdocker() (ultralytics#2232)

* Add isdocker()

* Update general.py

* Update general.py

* YOLOv5 Hub URL inference bug fix (ultralytics#2250)

* Update common.py

* Update common.py

* Update common.py

* Improved hubconf.py CI tests (ultralytics#2251)

* Unified hub and detect.py box and labels plotting (ultralytics#2243)

* reset head

* Update inference default to multi_label=False (ultralytics#2252)

* Update inference default to multi_label=False

* bug fix

* Update plots.py

* Update plots.py

* Robust objectness loss balancing (ultralytics#2256)

* Created using Colaboratory

* Update minimum stride to 32 (ultralytics#2266)

* Dynamic ONNX engine generation (ultralytics#2208)

* add: dynamic onnx export

* delete: test onnx inference

* fix dynamic output axis

* Code reduction

* fix: dynamic output axes, dynamic input naming

* Remove fixed axes

Co-authored-by: Shivam Swanrkar <[email protected]>
Co-authored-by: Glenn Jocher <[email protected]>

* Update greetings.yml for auto-rebase on PR (ultralytics#2272)

* Update Dockerfile with apt install zip (ultralytics#2274)

* FLOPS min stride 32 (ultralytics#2276)

Signed-off-by: xiaowo1996 <[email protected]>

* Update README.md

* Amazon AWS EC2 startup and re-startup scripts (ultralytics#2185)

* Amazon AWS EC2 startup and re-startup scripts

* Create resume.py

* cleanup

* Amazon AWS EC2 startup and re-startup scripts (ultralytics#2282)

* Update train.py (ultralytics#2290)

* Update train.py

* Update train.py

* Update train.py

* Update train.py

* Create train.py

* Improved model+EMA checkpointing (ultralytics#2292)

* Enhanced model+EMA checkpointing

* update

* bug fix

* bug fix 2

* always save optimizer

* ema half

* remove model.float()

* model half

* carry ema/model in fp32

* rm model.float()

* both to float always

* cleanup

* cleanup

* Improved model+EMA checkpointing 2 (ultralytics#2295)

* Fix labels being missed when image extension appears twice in filename (ultralytics#2300)

* W&B entity support (ultralytics#2298)

* W&B entity support

* shorten wandb_entity to entity

Co-authored-by: Jan Hajek <[email protected]>
Co-authored-by: Glenn Jocher <[email protected]>

* Avoid mutable state in Detect

* Update yolo and remove .to(device)

Co-authored-by: Oleg Boiko <[email protected]>
Co-authored-by: Glenn Jocher <[email protected]>
Co-authored-by: train255 <[email protected]>
Co-authored-by: ab-101 <[email protected]>
Co-authored-by: Transigent <[email protected]>
Co-authored-by: NanoCode012 <[email protected]>
Co-authored-by: Daniel Khromov <[email protected]>
Co-authored-by: VdLMV <[email protected]>
Co-authored-by: Jaap van de Loosdrecht <[email protected]>
Co-authored-by: Yann Defretin <[email protected]>
Co-authored-by: Aditya Lohia <[email protected]>
Co-authored-by: Shivam Swanrkar <[email protected]>
Co-authored-by: xiaowo1996 <[email protected]>
Co-authored-by: Iden Craven <[email protected]>
Co-authored-by: Jan Hajek <[email protected]>
Co-authored-by: Jan Hajek <[email protected]>

* final_epoch EMA bug fix (ultralytics#2317)

* Update test.py (ultralytics#2319)

* Update Dockerfile install htop (ultralytics#2320)

* remove TTA 1 pixel offset (ultralytics#2325)

* EMA bug fix 2 (ultralytics#2330)

* EMA bug fix 2

* update

* FROM nvcr.io/nvidia/pytorch:21.02-py3 (ultralytics#2341)

* Confusion matrix background axis swap (ultralytics#2114)

* Created using Colaboratory

* Anchor override (ultralytics#2350)

* Resume with custom anchors fix (ultralytics#2361)

* Resume with custom anchors fix

* Update train.py

* Faster random index generator for mosaic augmentation (ultralytics#2345)

* faster random index generator for mosaic augementation

We don't need to access list to generate random index

It makes augmentation slower.

* Update datasets.py

Co-authored-by: Glenn Jocher <[email protected]>

* --no-cache notebook (ultralytics#2381)

* ENV HOME=/usr/src/app (ultralytics#2382)

Set HOME environment variable per Binder requirements. 
https://github.com/binder-examples/minimal-dockerfile

* image weights compatible faster random index generator v2 for mosaic augmentation (ultralytics#2383)

image weights compatible faster random index generator v2 for mosaic augmentation

* GPU export options (ultralytics#2297)

* option for skip last layer and cuda export support

* added parameter device

* fix import

* cleanup 1

* cleanup 2

* opt-in grid

--grid will export with grid computation, default export will skip grid (same as current)

* default --device cpu

GPU export causes ONNX and CoreML errors.

Co-authored-by: Jan Hajek <[email protected]>
Co-authored-by: Glenn Jocher <[email protected]>

* bbox_iou() stability and speed improvements (ultralytics#2385)

* AWS wait && echo "All tasks done." (ultralytics#2391)

* GCP sudo docker userdata.sh (ultralytics#2393)

* GCP sudo docker

* cleanup

* CVPR 2021 Argoverse-HD dataset autodownload support (ultralytics#2400)

* added argoverse-download ability

* bugfix

* add support for Argoverse dataset

* Refactored code

* renamed to argoverse-HD

* unzip -q and YOLOv5

small cleanup items

* add image counts

Co-authored-by: Kartikeya Sharma <[email protected]>
Co-authored-by: Kartikeya Sharma <[email protected]>
Co-authored-by: Glenn Jocher <[email protected]>

* CVPR 2021 Argoverse-HD autodownload fix (ultralytics#2418)

* DDP after autoanchor reorder (ultralytics#2421)

* Integer printout (ultralytics#2450)

* Integer printout

* test.py 'Labels'

* Update train.py

* Update test.py --task train val study (ultralytics#2453)

* Update test.py --task train val study

* update argparser --task

* labels.jpg class names (ultralytics#2454)

* labels.png class names

* fontsize=10

* CVPR 2021 Argoverse-HD autodownload curl (ultralytics#2455)

curl preferred over wget for slightly better cross platform compatibility (i.e. out of the box macos compatible).

* Add autoShape() speed profiling (ultralytics#2459)

* Add autoShape() speed profiling

* Update common.py

* Create README.md

* Update hubconf.py

* cleanuip

* autoShape() speed profiling update (ultralytics#2460)

* Update tutorial.ipynb

* Created using Colaboratory

* Update autosplit() with annotated_only option (ultralytics#2466)

* Be able to create dataset from annotated images only

Add the ability to create a dataset/splits only with images that have an annotation file, i.e a .txt file, associated to it. As we talked about this, the absence of a txt file could mean two things:

* either the image wasn't yet labelled by someone,
* either there is no object to detect.

When it's easy to create small datasets, when you have to create datasets with thousands of images (and more coming), it's hard to track where you at and you don't want to wait to have all of them annotated before starting to train. Which means some images would lack txt files and annotations, resulting in label inconsistency as you say in ultralytics#2313. By adding the annotated_only argument to the function, people could create, if they want to, datasets/splits only with images that were labelled, for sure.

* Cleanup and update print()

Co-authored-by: Glenn Jocher <[email protected]>

* Scipy kmeans-robust autoanchor update (ultralytics#2470)

Fix for ultralytics#2394

* PyTorch Hub models default to CUDA:0 if available (ultralytics#2472)

* PyTorch Hub models default to CUDA:0 if available

* device as string bug fix

* Created using Colaboratory

* Improved W&B integration  (ultralytics#2125)

* Init Commit

* new wandb integration

* Update

* Use data_dict in test

* Updates

* Update: scope of log_img

* Update: scope of log_img

* Update

* Update: Fix logging conditions

* Add tqdm bar, support for .txt dataset format

* Improve Result table Logger

* Init Commit

* new wandb integration

* Update

* Use data_dict in test

* Updates

* Update: scope of log_img

* Update: scope of log_img

* Update

* Update: Fix logging conditions

* Add tqdm bar, support for .txt dataset format

* Improve Result table Logger

* Add dataset creation in training script

* Change scope: self.wandb_run

* Add wandb-artifact:// natively

you can now use --resume with wandb run links

* Add suuport for logging dataset while training

* Cleanup

* Fix: Merge conflict

* Fix: CI tests

* Automatically use wandb config

* Fix: Resume

* Fix: CI

* Enhance: Using val_table

* More resume enhancement

* FIX : CI

* Add alias

* Get useful opt config data

* train.py cleanup

* Cleanup train.py

* more cleanup

* Cleanup| CI fix

* Reformat using PEP8

* FIX:CI

* rebase

* remove uneccesary changes

* remove uneccesary changes

* remove uneccesary changes

* remove unecessary chage from test.py

* FIX: resume from local checkpoint

* FIX:resume

* FIX:resume

* Reformat

* Performance improvement

* Fix local resume

* Fix local resume

* FIX:CI

* Fix: CI

* Imporve image logging

* (:(:Redo CI tests:):)

* Remember epochs when resuming

* Remember epochs when resuming

* Update DDP location

Potential fix for ultralytics#2405

* PEP8 reformat

* 0.25 confidence threshold

* reset train.py plots syntax to previous

* reset epochs completed syntax to previous

* reset space to previous

* remove brackets

* reset comment to previous

* Update: is_coco check, remove unused code

* Remove redundant print statement

* Remove wandb imports

* remove dsviz logger from test.py

* Remove redundant change from test.py

* remove redundant changes from train.py

* reformat and improvements

* Fix typo

* Add tqdm tqdm progress when scanning files, naming improvements

Co-authored-by: Glenn Jocher <[email protected]>

* Update Detections() times=None (ultralytics#2570)

Fix for results.tolist() method breaking after YOLOv5 Hub profiling PRshttps://github.com/ultralytics/pull/2460 ultralytics#2459 and

* check_requirements() exclude pycocotools, thop (ultralytics#2571)

Exclude non-critical packages from dependency checks in detect.py. pycocotools and thop in particular are not required for inference.

Issue first raised in ultralytics#1944 and also raised in ultralytics#2556

* W&B DDP fix (ultralytics#2574)

* Enhanced check_requirements() with auto-install (ultralytics#2575)

* Update check_requirements() with auto-install

This PR builds on an idea I had to automatically install missing dependencies rather than simply report an error message. 

YOLOv5 should now 1) display all dependency issues and not simply display the first missing dependency, and 2) attempt to install/update each missing/VersionConflict package.

* cleanup

* cleanup 2

* Check requirements.txt file exists

* cleanup 3

* Update tensorboard>=2.4.1 (ultralytics#2576)

* Update tensorboard>=2.4.1 

Update tensorboard version to attempt to address ultralytics#2573 (tensorboard logging fail in Docker image).

* cleanup

* YOLOv5 PyTorch Hub models >> check_requirements() (ultralytics#2577)

* Update hubconf.py with check_requirements()

Dependency checks have been missing from YOLOv5 PyTorch Hub model loading, causing errors in some cases when users are attempting to import hub models in unsupported environments. This should examine the YOLOv5 requirements.txt file and pip install any missing or version-conflict packages encountered. 

This is highly experimental (!), please let us know if this creates problems in your custom workflows.

* Update hubconf.py

* W&B DDP fix 2 (ultralytics#2587)

Revert unintentional change to test batch sizes caused by PR ultralytics#2125

* YOLOv5 PyTorch Hub models >> check_requirements() (ultralytics#2588)

* YOLOv5 PyTorch Hub models >> check_requirements()

Update YOLOv5 PyTorch Hub requirements.txt path to cache path.

* Update hubconf.py

* YOLOv5 PyTorch Hub models >> check_requirements() (ultralytics#2591)

Prints 'Please restart runtime or rerun command for update to take effect.' following package auto-install to inform users to restart/rerun.

* YOLOv5 PyTorch Hub models >> check_requirements() (ultralytics#2592)

Improved user-feedback following requirements auto-update.

* Supervisely Ecosystem (ultralytics#2519)

guide describes YOLOv5 apps collection in Supervisely Ecosystem

* Save webcam results, add --nosave option (ultralytics#2598)

This updates the default detect.py behavior to automatically save all inference images/videos/webcams unless the new argument --nosave is used (python detect.py --nosave) or unless a list of streaming sources is passed (python detect.py --source streams.txt)

* Update segment2box() comment (ultralytics#2600)

* resume.py typo (ultralytics#2603)

* Remove Cython from requirements.txt (ultralytics#2604)

Cython should be a dependency of the remaining packages in requirements.txt, so should be installed anyway even if not a direct requirement.

* Update git_describe() for remote dir usage (ultralytics#2606)

* Add '*.mpo' to supported image formats (ultralytics#2615)

Co-authored-by: Max Uppenkamp <[email protected]>

* Create date_modified() (ultralytics#2616)

Updated device selection string with fallback for non-git directories.
```python
def select_device(device='', batch_size=None):
    # device = 'cpu' or '0' or '0,1,2,3'
    s = f'YOLOv5 🚀 {git_describe() or date_modified()} torch {torch.__version__} '  # string
...
```

* Update detections() self.t = tuple() (ultralytics#2617)

* Update detections() self.t = tuple()

Fix multiple results.print() bug.

* Update experimental.py

* Update yolo.py

* Fix Indentation in test.py (ultralytics#2614)

* Fix Indentation in test.py

* CI fix

* Comply with PEP8: 80 characters per line

* Update Detections() self.n comment (ultralytics#2620)

```python
        self.n = len(self.pred)  # number of images (batch size)
```

* Remove conflicting nvidia-tensorboard package (ultralytics#2622)

Attempt to resolve tensorboard Docker error in ultralytics#2573

* FROM nvcr.io/nvidia/pytorch:21.03-py3 (ultralytics#2623)

Update Docker FROM nvcr.io/nvidia/pytorch:21.03-py3

* Improve git_describe() (ultralytics#2633)

Catch 'fatal: not a git repository' returns and return '' instead (observed in GCP Hub checks).

* Fix: evolve with wandb (ultralytics#2634)

* W&B resume ddp from run link fix (ultralytics#2579)

* W&B resume ddp from run link fix

* Native DDP W&B support for training, resuming

* Improve git_describe() fix 1 (ultralytics#2635)

Add stderr=subprocess.STDOUT to catch error messages.

* PyTorch Hub custom model to CUDA device fix (ultralytics#2636)

Fix for ultralytics#2630 raised by @Pro100rus32

* PyTorch Hub amp.autocast() inference (ultralytics#2641)

I think this should help speed up CUDA inference, as currently models may be running in FP32 inference mode on CUDA devices unnecesarily.

* Add tqdm pbar.close() (ultralytics#2644)

When using tqdm, sometimes it can't print in one line and roll to next line.

* Speed profiling improvements (ultralytics#2648)

* Speed profiling improvements

* Update torch_utils.py

deepcopy() required to avoid adding elements to model.

* Update torch_utils.py

* Created using Colaboratory (ultralytics#2649)

* Update requirements.txt (ultralytics#2564)

* Add opencv-contrib-python to requirements.txt

* Update requirements.txt

Co-authored-by: Glenn Jocher <[email protected]>

* add option to disable half precision in test.py (ultralytics#2507)

Co-authored-by: Glenn Jocher <[email protected]>

* Add --label-smoothing eps argument to train.py (default 0.0) (ultralytics#2344)

* Add label smoothing option

* Correct data type

* add_log

* Remove log

* Add log

* Update loss.py

remove comment (too versbose)

Co-authored-by: phattran <[email protected]>
Co-authored-by: Glenn Jocher <[email protected]>

* Created using Colaboratory

* Set resume flag to false (ultralytics#2657)

* Update README.md

* Created using Colaboratory

* Update README with Tips for Best Results tutorial (ultralytics#2682)

* Update README with Tips for Best Results tutorial

* Update README.md

* Add TransformerLayer, TransformerBlock, C3TR modules (ultralytics#2333)

* yolotr

* transformer block

* Remove bias in Transformer

* Remove C3T

* Remove a deprecated class

* put the 2nd LayerNorm into the 2nd residual block

* move example model to models/hub, rename to -transformer

* Add module comments and TODOs

* Remove LN in Transformer

* Add comments for Transformer

* Solve the problem of MA with DDP

* cleanup

* cleanup find_unused_parameters

* PEP8 reformat

Co-authored-by: DingYiwei <[email protected]>
Co-authored-by: Glenn Jocher <[email protected]>

* Fix: ultralytics#2674 (ultralytics#2683)

* Set resume flag to false

* Check existance of val dataset

* PyTorch Hub model.save() increment as runs/hub/exp (ultralytics#2684)

* PyTorch Hub model.save() increment as runs/hub/exp

This chane will align PyTorch Hub results saving with the existing unified results saving directory structure of

runs/
  /train
  /detect
  /test
  /hub
    /exp
    /exp2
    ...

* cleanup

* autoShape forward im = np.asarray(im)  # to numpy (ultralytics#2689)

Slight speedup.

* pip install coremltools onnx (ultralytics#2690)

Requested in ultralytics#2686

* Updated filename attributes for YOLOv5 Hub results (ultralytics#2708)

Proposed fix for 'Model predict with forward will fail if PIL image does not have filename attribute' ultralytics#2702

* Updated filename attributes for YOLOv5 Hub BytesIO (ultralytics#2718)

Fix 2 for 'Model predict with forward will fail if PIL image does not have filename attribute' ultralytics#2702

* Add support for list-of-directory data format for wandb (ultralytics#2719)

* Update README with collapsable notes (ultralytics#2721)

* Update README with collapsable notes.

* cleanup

* center table

* Add Hub results.pandas() method (ultralytics#2725)

* Add Hub results.pandas() method

New method converts results from torch tensors to pandas DataFrames with column names.

This PR may partially resolve issue ultralytics#2703

```python
results = model(imgs)

print(results.pandas().xyxy[0])
         xmin        ymin        xmax        ymax  confidence  class    name
0   57.068970  391.770599  241.383545  905.797852    0.868964      0  person
1  667.661255  399.303589  810.000000  881.396667    0.851888      0  person
2  222.878387  414.774231  343.804474  857.825073    0.838376      0  person
3    4.205386  234.447678  803.739136  750.023376    0.658006      5     bus
4    0.000000  550.596008   76.681190  878.669922    0.450596      0  person
```

* Update comments 

torch example input now shown resized to size=640 and also now a multiple of P6 stride 64 (see ultralytics#2722 (comment))

* apply decorators

* PEP8

* Update common.py

* pd.options.display.max_columns = 10

* Update common.py

* autocast enable=torch.cuda.is_available() (ultralytics#2748)

* torch.cuda.amp bug fix (ultralytics#2750)

PR ultralytics#2725 introduced a very specific bug that only affects multi-GPU trainings. Apparently the cause was using the torch.cuda.amp decorator in the autoShape forward method. I've implemented amp more traditionally in this PR, and the bug is resolved.

* utils/wandb_logging PEP8 reformat (ultralytics#2755)

* wandb_logging PEP8 reformat

* Update wandb_utils.py

* Tensorboard model visualization bug fix (ultralytics#2758)

This fix should allow for visualizing YOLOv5 model graphs correctly in Tensorboard by uncommenting line 335 in train.py:
```python
                    if tb_writer:
                        tb_writer.add_graph(torch.jit.trace(model, imgs, strict=False), [])  # add model graph
```

The problem was that the detect() layer checks the input size to adapt the grid if required, and tracing does not seem to like this shape check (even if the shape is fine and no grid recomputation is required). The following will warn:
https://github.com/ultralytics/yolov5/blob/0cae7576a9241110157cd154fc2237e703c2719e/train.py#L335

Solution is below. This is a YOLOv5s model displayed in TensorBoard. You can see the Detect() layer merging the 3 layers into a single output for example, and everything appears to work and visualize correctly.
```python
tb_writer.add_graph(torch.jit.trace(model, imgs, strict=False), [])
```
<img width="893" alt="Screenshot 2021-04-11 at 01 10 09" src="https://user-images.githubusercontent.com/26833433/114286928-349bd600-9a63-11eb-941f-7139ee6cd602.png">

* Created using Colaboratory

* YouTube Livestream Detection (ultralytics#2752)

* Youtube livestream detection

* dependancy update to auto install pafy

* Remove print

* include youtube_dl in deps

* PEP8 reformat

* youtube url check fix

* reduce lines

* add comment

* update check_requirements

* stream framerate fix

* Update README.md

* cleanup

* PEP8

* remove cap.retrieve() failure code

Co-authored-by: Glenn Jocher <[email protected]>

* YOLOv5 v5.0 Release (ultralytics#2762)

* YOLOv5 v5.0 Release patch 1 (ultralytics#2764)

* torch.jit.trace(model, img, strict=False)

* Update check_file()

* Update hubconf.py

* Update README.md

* Update tutorial.ipynb

* Created using Colaboratory

* Update tutorial.ipynb

* Created using Colaboratory

* Created using Colaboratory

* Update README.md

* Flask REST API Example (ultralytics#2732)

* add files

* Update README.md

* Update README.md

* Update restapi.py

pretrained=True and model.eval() are used by default when loading a model now, so no need to call them manually.

* PEP8 reformat

* PEP8 reformat

Co-authored-by: Glenn Jocher <[email protected]>

* Update README.md

* ONNX Simplifier (ultralytics#2815)

* ONNX Simplifier

Add ONNX Simplifier to ONNX export pipeline in export.py. Will auto-install onnx-simplifier if onnx is installed but onnx-simplifier is not.

* Update general.py

* YouTube Bug Fix (ultralytics#2818)

Fix for ultralytics#2810
```shell
python detect.py --source 0
```
introduced by YouTube Livestream Detection PR ultralytics#2752

* PyTorch Hub cv2 .save() .show() bug fix (ultralytics#2831)

* PyTorch Hub cv2 .save() .show() bug fix

cv2.rectangle() was failing on non-contiguous np array inputs. This checks for contiguous arrays and applies is necessary:
```python
imgs[i] = im if im.data.contiguous else np.ascontiguousarray(im)  # update
```

* Update plots.py

```python
assert im.data.contiguous, 'Image not contiguous. Apply np.ascontiguousarray(im) to plot_on_box() input image.'
```

* Update hubconf.py

Expand CI tests to OpenCV image.

* Create FUNDING.yml (ultralytics#2832)

* Update FUNDING.yml (ultralytics#2833)

* Update FUNDING.yml

* move FUNDING.yml to ./github

* Fix ONNX dynamic axes export support with onnx simplifier, make onnx simplifier optional (ultralytics#2856)

* Ensure dynamic export works succesfully, onnx simplifier optional

* Update export.py

* add dashes

Co-authored-by: Tim <[email protected]>
Co-authored-by: Glenn Jocher <[email protected]>

* Update increment_path() to handle file paths (ultralytics#2867)

* Detection cropping+saving feature addition for detect.py and PyTorch Hub (ultralytics#2827)

* Update detect.py

* Update detect.py

* Update greetings.yml

* Update cropping

* cleanup

* Update increment_path()

* Update common.py

* Update detect.py

* Update detect.py

* Update detect.py

* Update common.py

* cleanup

* Update detect.py

Co-authored-by: Glenn Jocher <[email protected]>

* Implement yaml.safe_load() (ultralytics#2876)

* Implement yaml.safe_load()

* yaml.safe_dump()

* Cleanup load_image() (ultralytics#2871)

* don't resize up in load_image if augmenting

* cleanup

Co-authored-by: Glenn Jocher <[email protected]>

* bug fix: switched rows and cols for correct detections in confusion matrix (ultralytics#2883)

* VisDrone2019-DET Dataset Auto-Download (ultralytics#2882)

* VisDrone Dataset Auto-Download

* add visdrone.yaml

* cleanup

* add VisDrone2019-DET-test-dev

* cleanup VOC

* Uppercase model filenames enabled (ultralytics#2890)

* ACON activation function (ultralytics#2893)

* ACON Activation Function

## 🚀 Feature

There is a new activation function [ACON (CVPR 2021)](https://arxiv.org/pdf/2009.04759.pdf) that unifies ReLU and Swish. 
ACON is simple but very effective, code is here: https://github.com/nmaac/acon/blob/main/acon.py#L19

![image](https://user-images.githubusercontent.com/5032208/115676962-a38dfe80-a382-11eb-9883-61fa3216e3e6.png)

The improvements are very significant:
![image](https://user-images.githubusercontent.com/5032208/115680180-eac9be80-a385-11eb-9c7a-8643db552c69.png)

## Alternatives

It also has an enhanced version meta-ACON that uses a small network to learn beta explicitly, which may influence the speed a bit.

## Additional context

[Code](https://github.com/nmaac/acon) and [paper](https://arxiv.org/pdf/2009.04759.pdf).

* Update activations.py

* Explicit opt function arguments (ultralytics#2817)

* more explicit function arguments

* fix typo in detect.py

* revert import order

* revert import order

* remove default value

* Update yolo.py (ultralytics#2899)

* Update google_utils.py (ultralytics#2900)

* Add detect.py --hide-conf --hide-labels --line-thickness options (ultralytics#2658)

* command line option for line thickness and hiding labels

* command line option for line thickness and hiding labels

* command line option for line thickness and hiding labels

* command line option for line thickness and hiding labels

* command line option for line thickness and hiding labels

* command line option for hiding confidence values

* Update detect.py

Co-authored-by: Glenn Jocher <[email protected]>

* Default optimize_for_mobile() on TorchScript models (ultralytics#2908)

Per https://pytorch.org/tutorials/recipes/script_optimized.html this should improve performance on torchscript models (and maybe coreml models also since coremltools operates on a torchscript model input, though this still requires testing).

* Update export.py (ultralytics#2909)

* Update export.py for 2 dry runs (ultralytics#2910)

* Update export.py for 2 dry runs

* Update export.py

* Add file_size() function (ultralytics#2911)

* Add file_size() function

* Update export.py

* Update download() for tar.gz files (ultralytics#2919)

* Update download() for tar.gz files

* Update general.py

* Update visdrone.yaml (ultralytics#2921)

* Change default value of hide label argument to False (ultralytics#2923)

* Change default value of hide-conf argument to false (ultralytics#2925)

* test.py native --single-cls (ultralytics#2928)

* Add verbose option to pytorch hub models (ultralytics#2926)

* Add verbose and update print to logging

* Fix positonal param

* Revert auto formatting changes

* Update hubconf.py

Co-authored-by: Glenn Jocher <[email protected]>

* ACON Activation batch-size 1 bug patch (ultralytics#2901)

* ACON Activation batch-size 1 bug path

This is not a great solution to nmaac/acon#4 but it's all I could think of at the moment.

WARNING: YOLOv5 models with MetaAconC() activations are incapable of running inference at batch-size 1 properly due to a known bug in nmaac/acon#4 with no known solution.

* Update activations.py

* Update activations.py

* Update activations.py

* Update activations.py

* Check_requirements() enclosing apostrophe bug fix (ultralytics#2929)

This fixes a bug where the '>' symbol in python package requirements was not running correctly with subprocess.check_output() commands.

* Update README.md (ultralytics#2934)

* Update README.md

dependencies:
ImportError: libGL.so.1: cannot open shared object file: No such file or directory
ImportError: libgthread-2.0.so.0: cannot open shared object file: No such file or directory
ImportError: libSM.so.6: cannot open shared object file: No such file or directory
ImportError: libXrender.so.1: cannot open shared object file: No such file or directory

* replace older apt-get with apt

Code commented for now until a better understanding of the issue, and also code is not cross-platform compatible.

Co-authored-by: Glenn Jocher <[email protected]>

* Improved yolo.py profiling (ultralytics#2940)

* Improved yolo.py profiling

Improved column order and labelling.

* Update yolo.py

* Add yolov5/ to sys.path() for *.py subdir exec (ultralytics#2949)

* Add yolov5/ to sys.path() for *.py subdir exec

* Update export.py

* update UI + latest yolov5 sources (#15)

* merge latest version done, not tested

* split tabs with radio buttons

* models table -wip

* models table -wip

* start split html template to parts

* ui refactoring

* compile-template wip - paths confusion

* compile wip

* train/val splits

* keep/ignore unlabeled images

* models table

* training hyperparameters

* UI templates - done

* unlabeled count in UI

* add adam optimizer

* convert_project to detection - works

* start train/val splits

* splits wip

* splits done, only simple tests

* splits validation

* data preprocessing - not tested

* download weights - wip

* init_script_arguments - not tested

* init_script_arguments - not tested

* prepare weights - wip

* not tested

* add metrics period

* set output

* artifacts dirs

* train_batches_uploaded flag

* pre-release for debug

* update config

* update SDK version

* fix imports

* change imports

* change imports

* add UI sources directory to sys.path

* new SDK version

* new SDK version

* fix GIoU smoothing

* update smoothing

* send metrics for the last epoch

* save link to app UI

* todo

* log train/val size

* sly-to-yolov5 format: fix same names in different datasets

* fix inference

* serve not tested

* [serve] modal table stat

* [serve] modal tabs

* [serve] modal tabs

* [serve] modal width

* [serve] modal tabs style

* [serve] fix pretrained weights URL

* [serve] add stride to serv

* [train] readme wip

* [train] readme wip

* [train] readme wip

* [serve] change inference_image_id to work with remote storages (s3, azure, ...)

* [serve] fix stride initialization

* [serve] yolov5 serve - fixed

* add additional info logs

* [serve] todo

* [train] splits - hide notice1

* fix collections readme

* train readme - new screenshot

* train readme

Co-authored-by: Abhiram V <[email protected]>
Co-authored-by: Glenn Jocher <[email protected]>
Co-authored-by: ramonhollands <[email protected]>
Co-authored-by: Ayush Chaurasia <[email protected]>
Co-authored-by: train255 <[email protected]>
Co-authored-by: ab-101 <[email protected]>
Co-authored-by: Transigent <[email protected]>
Co-authored-by: NanoCode012 <[email protected]>
Co-authored-by: Daniel Khromov <[email protected]>
Co-authored-by: VdLMV <[email protected]>
Co-authored-by: Jaap van de Loosdrecht <[email protected]>
Co-authored-by: Yann Defretin <[email protected]>
Co-authored-by: Aditya Lohia <[email protected]>
Co-authored-by: Shivam Swanrkar <[email protected]>
Co-authored-by: xiaowo1996 <[email protected]>
Co-authored-by: Iden Craven <[email protected]>
Co-authored-by: Jan Hajek <[email protected]>
Co-authored-by: Jan Hajek <[email protected]>
Co-authored-by: oleg <[email protected]>
Co-authored-by: Oleg Boiko <[email protected]>
Co-authored-by: Ryan Avery <[email protected]>
Co-authored-by: Yonghye Kwon <[email protected]>
Co-authored-by: Kartikeya Sharma <[email protected]>
Co-authored-by: Kartikeya Sharma <[email protected]>
Co-authored-by: Kartikeya Sharma <[email protected]>
Co-authored-by: Yann Defretin <[email protected]>
Co-authored-by: maxupp <[email protected]>
Co-authored-by: Max Uppenkamp <[email protected]>
Co-authored-by: zzttqu <[email protected]>
Co-authored-by: Youngjin Shin <[email protected]>
Co-authored-by: Benjamin Fineran <[email protected]>
Co-authored-by: Phat Tran <[email protected]>
Co-authored-by: phattran <[email protected]>
Co-authored-by: Ding Yiwei <[email protected]>
Co-authored-by: DingYiwei <[email protected]>
Co-authored-by: Ben Milanko <[email protected]>
Co-authored-by: Robin <[email protected]>
Co-authored-by: Tim Stokman <[email protected]>
Co-authored-by: Tim <[email protected]>
Co-authored-by: Burhan <[email protected]>
Co-authored-by: JoshSong <[email protected]>
Co-authored-by: Michael Heilig <[email protected]>
Co-authored-by: r-blmnr <[email protected]>
Co-authored-by: fcakyon <[email protected]>
Co-authored-by: Maximilian Peters <[email protected]>
Co-authored-by: albinxavi <[email protected]>
Co-authored-by: BZFYS <[email protected]>
Lechtr pushed a commit to Lechtr/yolov5 that referenced this pull request Jul 20, 2021
taicaile pushed a commit to taicaile/yolov5 that referenced this pull request Oct 12, 2021
BjarneKuehl pushed a commit to fhkiel-mlaip/yolov5 that referenced this pull request Aug 26, 2022
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment