Code for the paper "Integrating Visual and Semantic Similarity Using Hierarchies for Image Retrieval"
The dataset is arranged such that each class has a directory with the corresponding images placed in them. An example directory structure is shown below.
├── dataset
│ ├── train_data
│ │ ├── class1
│ │ ├── class2
...
│ │ ├── classN
│ ├── test_data
│ │ ├── class1
│ │ ├── class2
...
│ │ ├── classN
Each dataset is followed by a csv file containing the class name and the corresponding classification label. An example for CIFAR10 is given in data/cifar10.csv
.
The dataset paths and the id paths (csv files) should be included in the config.py
.
The hyperparameters and arguments needed for training the network are available in config.py
.
To launch the training, run
python3 train.py
The code automatically splits the dataset into train and validation.
To launch the inference, run
python3 main_img_retrieval.py
This computes the hierarchy and performs image retrieval.
If you use this code, please cite the following paper:
Aishwarya Venkataramanan, Martin Laviale, and Cédric Pradalier. "Integrating Visual and Semantic Similarity Using Hierarchies for Image Retrieval." International Conference on Computer Vision Systems. Cham: Springer Nature Switzerland, 2023.
@inproceedings{venkataramanan2023integrating,
title={Integrating Visual and Semantic Similarity Using Hierarchies for Image Retrieval},
author={Venkataramanan, Aishwarya and Laviale, Martin and Pradalier, C{\'e}dric},
booktitle={International Conference on Computer Vision Systems},
pages={422--431},
year={2023},
organization={Springer}
}