Skip to content

vasi-stripe/sparkey-java

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

This is the java version of sparkey. It's not a binding, but a full reimplementation. See Sparkey for more documentation on how it works.

Travis

Continuous integration with travis.

Build Status

Dependencies

  • Java 6 or higher
  • Maven

Building

mvn package

Changelog

See changelog.

Usage

Sparkey is meant to be used as a library embedded in other software.

To import it with maven, use this:

<dependency>
  <groupId>com.spotify.sparkey</groupId>
  <artifactId>sparkey</artifactId>
  <version>2.2.0</version>
</dependency>

To help get started, take a look at the API documentation or an example usage: SparkeyExample

License

Apache License, Version 2.0

Performance

This data is the direct output from running

mvn clean package install && (cd benchmark; mvn clean package)
scp benchmark/target/microbenchmarks.jar $TESTMACHINE:

and then running this on the test machine:

java -jar microbenchmarks.jar com.spotify.sparkey.system.*.*

on the same machine ((Intel(R) Xeon(R) CPU L5630 @ 2.13GHz)) as the performance benchmark for the sparkey c implementation, so the numbers should be somewhat comparable.

Benchmark                            (numElements) (type)   Mode   Samples         Mean   Mean error    Units
c.s.s.s.AppendBenchmark.testMedium             N/A   NONE  thrpt       100   560514.462    11164.792    ops/s
c.s.s.s.AppendBenchmark.testMedium             N/A SNAPPY  thrpt       100   287809.906     5216.655    ops/s
c.s.s.s.AppendBenchmark.testSmall              N/A   NONE  thrpt       100  2530425.989   106629.449    ops/s
c.s.s.s.AppendBenchmark.testSmall              N/A SNAPPY  thrpt       100  2909965.740   114540.700    ops/s

c.s.s.s.LookupBenchmark.test                  1000   NONE  thrpt       100  1583592.318    44701.721    ops/s
c.s.s.s.LookupBenchmark.test                  1000 SNAPPY  thrpt       100   401894.168     6929.453    ops/s
c.s.s.s.LookupBenchmark.test                 10000   NONE  thrpt       100  1505772.744    44702.055    ops/s
c.s.s.s.LookupBenchmark.test                 10000 SNAPPY  thrpt       100   417876.461     7232.855    ops/s
c.s.s.s.LookupBenchmark.test                100000   NONE  thrpt       100  1328646.838    35313.306    ops/s
c.s.s.s.LookupBenchmark.test                100000 SNAPPY  thrpt       100   422015.707     5738.393    ops/s
c.s.s.s.LookupBenchmark.test               1000000   NONE  thrpt       100  1132310.981    34490.731    ops/s
c.s.s.s.LookupBenchmark.test               1000000 SNAPPY  thrpt       100   387936.344     6120.736    ops/s
c.s.s.s.LookupBenchmark.test              10000000   NONE  thrpt       100   963257.371    15601.812    ops/s
c.s.s.s.LookupBenchmark.test              10000000 SNAPPY  thrpt       100   388512.642     1823.866    ops/s
c.s.s.s.LookupBenchmark.test             100000000   NONE  thrpt        80   764810.198    23815.241    ops/s
c.s.s.s.LookupBenchmark.test             100000000 SNAPPY  thrpt       100   367202.525     4695.112    ops/s

c.s.s.s.WriteHashBenchmark.test          100000000    N/A     ss       100       86.003        2.437        s
c.s.s.s.WriteHashBenchmark.test           10000000    N/A     ss       100        6.772        0.116        s
c.s.s.s.WriteHashBenchmark.test            1000000    N/A     ss       100        0.424        0.012        s
c.s.s.s.WriteHashBenchmark.test             100000    N/A     ss       100        0.046        0.000        s
c.s.s.s.WriteHashBenchmark.test              10000    N/A     ss       100        0.006        0.001        s
c.s.s.s.WriteHashBenchmark.test               1000    N/A     ss       100        0.008        0.001        s

Some notes on the results:

  • The AppendBenchmark is bottlenecking on disk write rather than CPU.
  • The lookup performance degrades somewhat as more elements are added. It is unclear exactly what causes this, but it is likely a combination of page cache misses, cpu cache misses and algorithmic complexity of the hash algorithm.
  • The writeHash performance appears to be mostly linear, the actual superlinear behaviour is possibly due to page cache misses and algorithmic complexity of the hash algorithm.

About

Java implementation of the Sparkey key value store

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Java 100.0%