forked from ray-project/ray
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[AIR] Experiment restore stress tests (ray-project#33706)
Signed-off-by: Justin Yu <[email protected]>
- Loading branch information
Showing
5 changed files
with
477 additions
and
16 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,183 @@ | ||
import collections | ||
import json | ||
import os | ||
from pathlib import Path | ||
import random | ||
import time | ||
from typing import Dict, List, Optional | ||
|
||
import ray | ||
from ray import air, tune | ||
from ray.air import Checkpoint, session | ||
from ray.train.data_parallel_trainer import DataParallelTrainer | ||
from ray.tune.experiment import Trial | ||
|
||
|
||
RUNNER_TYPE = os.environ.get("RUNNER_TYPE", "trainer") | ||
STORAGE_PATH = os.environ.get("STORAGE_PATH", "/tmp/ray_results") | ||
EXP_NAME = os.environ.get("EXP_NAME", "restore_integration_test") | ||
CALLBACK_DUMP_FILE = os.environ.get( | ||
"CALLBACK_DUMP_FILE", "/tmp/callback_dump_file.json" | ||
) | ||
CSV_DATA_FILE = os.environ.get("CSV_DATA_FILE", "/tmp/dummy.csv") | ||
|
||
TIME_PER_ITER_S = float(os.environ.get("TIME_PER_ITER_S", "0.5")) | ||
NUM_TRIALS = int(os.environ.get("NUM_TRIALS", "1")) | ||
MAX_CONCURRENT_TRIALS = int(os.environ.get("MAX_CONCURRENT_TRIALS", "2")) | ||
ITERATIONS_PER_TRIAL = int(os.environ.get("ITERATIONS_PER_TRIAL", "64")) | ||
|
||
|
||
class StatefulCallback(tune.Callback): | ||
def __init__(self): | ||
self._trial_iterations = collections.defaultdict(list) | ||
|
||
def on_trial_result( | ||
self, | ||
iteration: int, | ||
trials: List["Trial"], | ||
trial: "Trial", | ||
result: Dict, | ||
**info, | ||
): | ||
self._trial_iterations[trial.trial_id].append(result["training_iteration"]) | ||
|
||
def on_experiment_end(self, trials: List["Trial"], **info): | ||
# Save callback contents to file | ||
with open(CALLBACK_DUMP_FILE, "w") as f: | ||
json.dump(self.get_state(), f, indent=2) | ||
|
||
def get_state(self) -> Optional[Dict]: | ||
return {"trial_iters": self._trial_iterations.copy()} | ||
|
||
def set_state(self, state: Dict): | ||
self._trial_iterations = state["trial_iters"] | ||
|
||
|
||
class StatefulSearcher(tune.search.Searcher): | ||
def __init__( | ||
self, | ||
metric: Optional[str] = None, | ||
mode: Optional[str] = None, | ||
): | ||
super().__init__(metric=metric, mode=mode) | ||
self._trial_count = 0 | ||
|
||
def suggest(self, trial_id: str) -> Optional[Dict]: | ||
self._trial_count += 1 | ||
return {"id": self._trial_count} | ||
|
||
def on_trial_complete( | ||
self, trial_id: str, result: Optional[Dict] = None, error: bool = False | ||
) -> None: | ||
pass | ||
|
||
def save(self, checkpoint_path: str): | ||
with open(checkpoint_path, "w") as f: | ||
json.dump({"trial_count": self._trial_count}, f) | ||
|
||
def restore(self, checkpoint_path: str): | ||
with open(checkpoint_path, "r") as f: | ||
state = json.load(f) | ||
self._trial_count = state["trial_count"] | ||
|
||
|
||
def train_fn(config: dict, data: Optional[dict] = None): | ||
checkpoint = session.get_checkpoint() | ||
start = checkpoint.to_dict()["iteration"] + 1 if checkpoint else 1 | ||
|
||
training_started_marker = Path( | ||
os.environ.get("RUN_STARTED_MARKER", "/tmp/does-not-exist") | ||
) | ||
if training_started_marker.exists(): | ||
# Multiple workers may be trying to delete the same marker | ||
try: | ||
training_started_marker.unlink() | ||
except FileNotFoundError: | ||
pass | ||
|
||
for iteration in range(start, ITERATIONS_PER_TRIAL + 1): | ||
time.sleep(TIME_PER_ITER_S) | ||
|
||
session.report( | ||
{"score": random.random()}, | ||
checkpoint=Checkpoint.from_dict({"iteration": iteration}), | ||
) | ||
|
||
|
||
def tuner(experiment_path: str, run_config: air.RunConfig) -> tune.ResultGrid: | ||
trainable = tune.with_resources(train_fn, resources={"CPU": 1}) | ||
trainable = tune.with_parameters(trainable, data={"dummy_data": [1, 2, 3]}) | ||
|
||
if tune.Tuner.can_restore(experiment_path): | ||
tuner = tune.Tuner.restore( | ||
experiment_path, trainable=trainable, resume_errored=True | ||
) | ||
else: | ||
tuner = tune.Tuner( | ||
trainable, | ||
run_config=run_config, | ||
tune_config=tune.TuneConfig( | ||
num_samples=8, | ||
max_concurrent_trials=2, | ||
search_alg=StatefulSearcher(), | ||
), | ||
) | ||
|
||
result_grid = tuner.fit() | ||
return result_grid | ||
|
||
|
||
def trainer(experiment_path: str, run_config: air.RunConfig) -> air.Result: | ||
dataset_size = 128 | ||
num_workers = 4 | ||
|
||
def train_loop_per_worker(config): | ||
# Wrap the other train_fn with a check for the dataset. | ||
assert session.get_dataset_shard("train") | ||
train_fn(config) | ||
|
||
datasets = { | ||
"train": ray.data.range(dataset_size), | ||
"valid": ray.data.read_csv(CSV_DATA_FILE), | ||
} | ||
|
||
if DataParallelTrainer.can_restore(experiment_path): | ||
trainer = DataParallelTrainer.restore( | ||
experiment_path, | ||
datasets=datasets, | ||
train_loop_per_worker=train_loop_per_worker, | ||
) | ||
else: | ||
trainer = DataParallelTrainer( | ||
train_loop_per_worker, | ||
datasets=datasets, | ||
scaling_config=air.ScalingConfig( | ||
num_workers=num_workers, trainer_resources={"CPU": 0} | ||
), | ||
run_config=run_config, | ||
) | ||
|
||
result = trainer.fit() | ||
return result | ||
|
||
|
||
if __name__ == "__main__": | ||
experiment_path = os.path.join(STORAGE_PATH, EXP_NAME) | ||
|
||
ray.init() | ||
|
||
run_config = air.RunConfig( | ||
storage_path=STORAGE_PATH, | ||
name=EXP_NAME, | ||
checkpoint_config=air.CheckpointConfig(num_to_keep=1), | ||
callbacks=[StatefulCallback()], | ||
) | ||
|
||
if RUNNER_TYPE == "tuner": | ||
tuner(experiment_path, run_config) | ||
elif RUNNER_TYPE == "trainer": | ||
trainer(experiment_path, run_config) | ||
else: | ||
raise NotImplementedError( | ||
"`RUNNER_TYPE` environment var must be one of ['tuner', 'trainer']" | ||
) |
Oops, something went wrong.