Skip to content

woo-soojin/context-based-vlpr

Repository files navigation

Context-based Visual Language Place Recognition

Download Dataset

  • KITTI dataset
    • image_2 (.png) and ground truth poses (.txt) are required.
    • download link

Download Checkpoints for LSeg

Folder Structure

${ROOT}
└── data/
     └── kitti/
          └── 00/
               └── image_2/
               └── poses.txt
     └── pittsburgh/             
└── lseg/
     └── codebook.npy
     └── text_embedding.npy
     └── sripts/
         └── checkpoints/
              └── demo_e200.ckpt

Evaluation

NetVLAD

Pittsburgh Dataset

  • mode: Select mode. (default: train, options: train, test, cluster)
  • resume: Path to load checkpoint from, for resuming training or testing.
  • dataset: Dataset to use. (default: pittsburgh, options: pittsburgh, kitti)
  • random: Randomize dataset for test. (default: False)
  • extract_dataset: Extract partial dataset from whole dataset. (default: False)
python main.py --mode=test --resume=<path to checkpoint> --dataset=pittsburgh

KITTI Dataset

  • Use image_2 for the test.
  • mode: Select mode. (default: train, options: train, test, cluster)
  • resume: Path to load checkpoint from, for resuming training or testing.
  • dataset: Dataset to use. (default: pittsburgh, options: pittsburgh, kitti)
  • random: Randomize dataset for test. (default: False)
python main.py --mode=test --resume=<path to checkpoint> --dataset=kitti

Our Method

Creat Text Embedding

  • Input custom label set to create text embedding.
cd <path to repository>
python build_text_embedding.py

Pittsburgh Dataset

  • dataset: Dataset to use. (default: pittsburgh, options: pittsburgh, kitti)
  • random: Randomize dataset for test. (default: False)
  • build_codebook: If True, generate codebook for BoW. If False calculate recall for query images. (default: False)
  • use_codebook: If True, use predefined codebook. (default: False)
  • extract_dataset: Extract partial dataset from whole dataset. (default: False)
cd <path to repository>
python extract_pixel_level_embedding.py --dataset=pittsburgh

KITTI Dataset

  • dataset: Dataset to use. (default: pittsburgh, options: pittsburgh, kitti)
  • random: Randomize dataset for test. (default: False)
  • build_codebook: If True, generate codebook for BoW. If False calculate recall for query images. (default: False)
  • use_codebook: If True, use predefined codebook. (default: False)
  • extract_dataset: Extract partial dataset from whole dataset. (default: False)
cd <path to repository>
python extract_pixel_level_embedding.py --dataset=kitti

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages