Skip to content

Commit

Permalink
Add ASV benchmark CI workflow (#139)
Browse files Browse the repository at this point in the history
* Add ASV workflow

* Apply suggestions from code review

* Forgot to delete folders

* Update asv_bench/benchmarks/combine.py

* Restart with current benchmarks

* Always run benchmark for now.

* Don't test argmax until it's supported in "flox" engine

* Add a skip_slow function.

* try out micromamba

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Add os

* try adding asv to  environment file

Co-authored-by: Deepak Cherian <[email protected]>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
  • Loading branch information
3 people authored Aug 17, 2022
1 parent 39870ee commit fbc2af8
Show file tree
Hide file tree
Showing 8 changed files with 235 additions and 13 deletions.
78 changes: 78 additions & 0 deletions .github/workflows/benchmarks.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,78 @@
name: Benchmark

on:
pull_request:
types: [opened, reopened, synchronize, labeled]
workflow_dispatch:

jobs:
benchmark:
# if: ${{ contains( github.event.pull_request.labels.*.name, 'run-benchmark') && github.event_name == 'pull_request' || github.event_name == 'workflow_dispatch' }} # Run if the PR has been labelled correctly.
if: ${{ github.event_name == 'pull_request' || github.event_name == 'workflow_dispatch' }} # Always run.
name: Linux
runs-on: ubuntu-20.04
env:
ASV_DIR: "./asv_bench"

steps:
# We need the full repo to avoid this issue
# https://github.com/actions/checkout/issues/23
- uses: actions/checkout@v3
with:
fetch-depth: 0

- name: Set up conda environment
uses: mamba-org/provision-with-micromamba@v12
with:
environment-file: ci/environment.yml
environment-name: flox-tests
cache-env: true
# extra-specs: |
# python="${{ matrix.python-version }}"

# - name: Setup some dependencies
# shell: bash -l {0}
# run: |
# pip install asv
# sudo apt-get update -y

- name: Run benchmarks
shell: bash -l {0}
id: benchmark
env:
OPENBLAS_NUM_THREADS: 1
MKL_NUM_THREADS: 1
OMP_NUM_THREADS: 1
ASV_FACTOR: 1.5
ASV_SKIP_SLOW: 1
run: |
set -x
# ID this runner
asv machine --yes
echo "Baseline: ${{ github.event.pull_request.base.sha }} (${{ github.event.pull_request.base.label }})"
echo "Contender: ${GITHUB_SHA} (${{ github.event.pull_request.head.label }})"
# Use mamba for env creation
# export CONDA_EXE=$(which mamba)
export CONDA_EXE=$(which conda)
# Run benchmarks for current commit against base
ASV_OPTIONS="--split --show-stderr --factor $ASV_FACTOR"
asv continuous $ASV_OPTIONS ${{ github.event.pull_request.base.sha }} ${GITHUB_SHA} \
| sed "/Traceback \|failed$\|PERFORMANCE DECREASED/ s/^/::error::/" \
| tee benchmarks.log
# Report and export results for subsequent steps
if grep "Traceback \|failed\|PERFORMANCE DECREASED" benchmarks.log > /dev/null ; then
exit 1
fi
working-directory: ${{ env.ASV_DIR }}

- name: Add instructions to artifact
if: always()
run: |
cp benchmarks/README_CI.md benchmarks.log .asv/results/
working-directory: ${{ env.ASV_DIR }}

- uses: actions/upload-artifact@v3
if: always()
with:
name: asv-benchmark-results-${{ runner.os }}
path: ${{ env.ASV_DIR }}/.asv/results
10 changes: 5 additions & 5 deletions asv.conf.json → asv_bench/asv.conf.json
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@

// The URL or local path of the source code repository for the
// project being benchmarked
"repo": ".",
"repo": "..",

// The Python project's subdirectory in your repo. If missing or
// the empty string, the project is assumed to be located at the root
Expand All @@ -37,7 +37,7 @@
// determined from "repo" by looking at the protocol in the URL
// (if remote), or by looking for special directories, such as
// ".git" (if local).
// "dvcs": "git",
"dvcs": "git",

// The tool to use to create environments. May be "conda",
// "virtualenv" or other value depending on the plugins in use.
Expand All @@ -48,10 +48,10 @@

// timeout in seconds for installing any dependencies in environment
// defaults to 10 min
//"install_timeout": 600,
"install_timeout": 600,

// the base URL to show a commit for the project.
"show_commit_url": "http://github.com/dcherian/flox/commit/",
"show_commit_url": "http://github.com/xarray-contrib/flox/commit/",

// The Pythons you'd like to test against. If not provided, defaults
// to the current version of Python used to run `asv`.
Expand Down Expand Up @@ -114,7 +114,7 @@

// The directory (relative to the current directory) that benchmarks are
// stored in. If not provided, defaults to "benchmarks"
// "benchmark_dir": "benchmarks",
"benchmark_dir": "benchmarks",

// The directory (relative to the current directory) to cache the Python
// environments in. If not provided, defaults to "env"
Expand Down
122 changes: 122 additions & 0 deletions asv_bench/benchmarks/README_CI.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,122 @@
# Benchmark CI

<!-- Author: @jaimergp -->
<!-- Last updated: 2021.07.06 -->
<!-- Describes the work done as part of https://github.com/scikit-image/scikit-image/pull/5424 -->

## How it works

The `asv` suite can be run for any PR on GitHub Actions (check workflow `.github/workflows/benchmarks.yml`) by adding a `run-benchmark` label to said PR. This will trigger a job that will run the benchmarking suite for the current PR head (merged commit) against the PR base (usually `main`).

We use `asv continuous` to run the job, which runs a relative performance measurement. This means that there's no state to be saved and that regressions are only caught in terms of performance ratio (absolute numbers are available but they are not useful since we do not use stable hardware over time). `asv continuous` will:

* Compile `scikit-image` for _both_ commits. We use `ccache` to speed up the process, and `mamba` is used to create the build environments.
* Run the benchmark suite for both commits, _twice_ (since `processes=2` by default).
* Generate a report table with performance ratios:
* `ratio=1.0` -> performance didn't change.
* `ratio<1.0` -> PR made it slower.
* `ratio>1.0` -> PR made it faster.

Due to the sensitivity of the test, we cannot guarantee that false positives are not produced. In practice, values between `(0.7, 1.5)` are to be considered part of the measurement noise. When in doubt, running the benchmark suite one more time will provide more information about the test being a false positive or not.

## Running the benchmarks on GitHub Actions

1. On a PR, add the label `run-benchmark`.
2. The CI job will be started. Checks will appear in the usual dashboard panel above the comment box.
3. If more commits are added, the label checks will be grouped with the last commit checks _before_ you added the label.
4. Alternatively, you can always go to the `Actions` tab in the repo and [filter for `workflow:Benchmark`](https://github.com/scikit-image/scikit-image/actions?query=workflow%3ABenchmark). Your username will be assigned to the `actor` field, so you can also filter the results with that if you need it.

## The artifacts

The CI job will also generate an artifact. This is the `.asv/results` directory compressed in a zip file. Its contents include:

* `fv-xxxxx-xx/`. A directory for the machine that ran the suite. It contains three files:
* `<baseline>.json`, `<contender>.json`: the benchmark results for each commit, with stats.
* `machine.json`: details about the hardware.
* `benchmarks.json`: metadata about the current benchmark suite.
* `benchmarks.log`: the CI logs for this run.
* This README.

## Re-running the analysis

Although the CI logs should be enough to get an idea of what happened (check the table at the end), one can use `asv` to run the analysis routines again.

1. Uncompress the artifact contents in the repo, under `.asv/results`. This is, you should see `.asv/results/benchmarks.log`, not `.asv/results/something_else/benchmarks.log`. Write down the machine directory name for later.
2. Run `asv show` to see your available results. You will see something like this:

```
$> asv show
Commits with results:
Machine : Jaimes-MBP
Environment: conda-py3.9-cython-numpy1.20-scipy
00875e67
Machine : fv-az95-499
Environment: conda-py3.7-cython-numpy1.17-pooch-scipy
8db28f02
3a305096
```

3. We are interested in the commits for `fv-az95-499` (the CI machine for this run). We can compare them with `asv compare` and some extra options. `--sort ratio` will show largest ratios first, instead of alphabetical order. `--split` will produce three tables: improved, worsened, no changes. `--factor 1.5` tells `asv` to only complain if deviations are above a 1.5 ratio. `-m` is used to indicate the machine ID (use the one you wrote down in step 1). Finally, specify your commit hashes: baseline first, then contender!

```
$> asv compare --sort ratio --split --factor 1.5 -m fv-az95-499 8db28f02 3a305096
Benchmarks that have stayed the same:
before after ratio
[8db28f02] [3a305096]
<ci-benchmark-check~9^2>
n/a n/a n/a benchmark_restoration.RollingBall.time_rollingball_ndim
1.23±0.04ms 1.37±0.1ms 1.12 benchmark_transform_warp.WarpSuite.time_to_float64(<class 'numpy.float64'>, 128, 3)
5.07±0.1μs 5.59±0.4μs 1.10 benchmark_transform_warp.ResizeLocalMeanSuite.time_resize_local_mean(<class 'numpy.float32'>, (192, 192, 192), (192, 192, 192))
1.23±0.02ms 1.33±0.1ms 1.08 benchmark_transform_warp.WarpSuite.time_same_type(<class 'numpy.float32'>, 128, 3)
9.45±0.2ms 10.1±0.5ms 1.07 benchmark_rank.Rank3DSuite.time_3d_filters('majority', (32, 32, 32))
23.0±0.9ms 24.6±1ms 1.07 benchmark_interpolation.InterpolationResize.time_resize((80, 80, 80), 0, 'symmetric', <class 'numpy.float64'>, True)
38.7±1ms 41.1±1ms 1.06 benchmark_transform_warp.ResizeLocalMeanSuite.time_resize_local_mean(<class 'numpy.float32'>, (2048, 2048), (192, 192, 192))
4.97±0.2μs 5.24±0.2μs 1.05 benchmark_transform_warp.ResizeLocalMeanSuite.time_resize_local_mean(<class 'numpy.float32'>, (2048, 2048), (2048, 2048))
4.21±0.2ms 4.42±0.3ms 1.05 benchmark_rank.Rank3DSuite.time_3d_filters('gradient', (32, 32, 32))
...
```

If you want more details on a specific test, you can use `asv show`. Use `-b pattern` to filter which tests to show, and then specify a commit hash to inspect:

```
$> asv show -b time_to_float64 8db28f02
Commit: 8db28f02 <ci-benchmark-check~9^2>
benchmark_transform_warp.WarpSuite.time_to_float64 [fv-az95-499/conda-py3.7-cython-numpy1.17-pooch-scipy]
ok
=============== ============= ========== ============= ========== ============ ========== ============ ========== ============
-- N / order
--------------- --------------------------------------------------------------------------------------------------------------
dtype_in 128 / 0 128 / 1 128 / 3 1024 / 0 1024 / 1 1024 / 3 4096 / 0 4096 / 1 4096 / 3
=============== ============= ========== ============= ========== ============ ========== ============ ========== ============
numpy.uint8 2.56±0.09ms 523±30μs 1.28±0.05ms 130±3ms 28.7±2ms 81.9±3ms 2.42±0.01s 659±5ms 1.48±0.01s
numpy.uint16 2.48±0.03ms 530±10μs 1.28±0.02ms 130±1ms 30.4±0.7ms 81.1±2ms 2.44±0s 653±3ms 1.47±0.02s
numpy.float32 2.59±0.1ms 518±20μs 1.27±0.01ms 127±3ms 26.6±1ms 74.8±2ms 2.50±0.01s 546±10ms 1.33±0.02s
numpy.float64 2.48±0.04ms 513±50μs 1.23±0.04ms 134±3ms 30.7±2ms 85.4±2ms 2.55±0.01s 632±4ms 1.45±0.01s
=============== ============= ========== ============= ========== ============ ========== ============ ========== ============
started: 2021-07-06 06:14:36, duration: 1.99m
```

## Other details

### Skipping slow or demanding tests

To minimize the time required to run the full suite, we trimmed the parameter matrix in some cases and, in others, directly skipped tests that ran for too long or require too much memory. Unlike `pytest`, `asv` does not have a notion of marks. However, you can `raise NotImplementedError` in the setup step to skip a test. In that vein, a new private function is defined at `benchmarks.__init__`: `_skip_slow`. This will check if the `ASV_SKIP_SLOW` environment variable has been defined. If set to `1`, it will raise `NotImplementedError` and skip the test. To implement this behavior in other tests, you can add the following attribute:

```python
from . import _skip_slow # this function is defined in benchmarks.__init__

def time_something_slow():
pass

time_something.setup = _skip_slow
```
28 changes: 28 additions & 0 deletions asv_bench/benchmarks/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
import os


def parameterized(names, params):
def decorator(func):
func.param_names = names
func.params = params
return func

return decorator


def _skip_slow():
"""
Use this function to skip slow or highly demanding tests.
Use it as a `Class.setup` method or a `function.setup` attribute.
Examples
--------
>>> from . import _skip_slow
>>> def time_something_slow():
... pass
...
>>> time_something.setup = _skip_slow
"""
if os.environ.get("ASV_SKIP_SLOW", "0") == "1":
raise NotImplementedError("Skipping this test...")
File renamed without changes.
2 changes: 1 addition & 1 deletion benchmarks/reduce.py → asv_bench/benchmarks/reduce.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@
from . import parameterized

N = 1000
funcs = ["sum", "nansum", "mean", "nanmean", "argmax", "max"]
funcs = ["sum", "nansum", "mean", "nanmean", "max"]
engines = ["flox", "numpy"]


Expand Down
7 changes: 0 additions & 7 deletions benchmarks/__init__.py

This file was deleted.

1 change: 1 addition & 0 deletions ci/environment.yml
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@ name: flox-tests
channels:
- conda-forge
dependencies:
- asv
- cachey
- codecov
- dask-core
Expand Down

0 comments on commit fbc2af8

Please sign in to comment.