Code for UCSD CSE 258 Web Mining and Recommender Systems
Course Website: http://cseweb.ucsd.edu/classes/fa17/cse258-a/
Simple Regression and Classification about beer review data
http://cseweb.ucsd.edu/classes/fa17/cse258-a/files/homework1.pdf
Beer data: /data/beer_50000.zip
-
Classifier Evaluation: TP, FP, TN, FN, Precision, Recall and BER
-
Dimension Reduction: PCA
http://cseweb.ucsd.edu/classes/fa17/cse258-a/files/homework2.pdf
Beer data: /data/beer_50000.zip
Preview of Assignment 1
http://cseweb.ucsd.edu/classes/fa17/cse258-a/files/homework3.pdf
Data: https://www.kaggle.com/c/cse258-fa17-rating-prediction/data
Using kNN Method to predict whether the user visited the item or not
Google Local Visit Prediction: https://www.kaggle.com/c/cse158-258-fa17-visit-prediction
Using Latent Factor Model to predict the rating score of given user-item pairs.
Google Local Rating Prediction: https://www.kaggle.com/c/cse258-fa17-rating-prediction
Amazon Review Helpful Classification
Data: http://jmcauley.ucsd.edu/data/amazon/
Using Logistic Regression and SVM to predict the reviews' helpfulness rated by other user
Features include review time, review Readability and TF-IDF.