这个项目是为了记录经典深度学习模型在不同框架(x86)中的部署
Ubuntu
CUDA
OpenCV
TensorRT
ONNXRuntime
OpenVino
下载与cuda版本相对应TensorRT(建议下载tar版本),下载地址: https://developer.nvidia.com/nvidia-tensorrt-download
直接解压,在~/.bashrc(或者/etc/profile)文件中添加环境变量:
export LD_LIBRARY_PATH=path_to/TensorRT-7.2.3.4/lib:$LD_LIBRARY_PATH
source ~/.bshrc
参考 https://blog.csdn.net/weixin_48592526/article/details/128023674
1.下载Ubuntu18.04 docker
docker pull openvino/ubuntu18_dev
2.启动docker
docker run -itu root:root --name openvino -v /home/path/:/home/docker_path/ -v /tmp/.X11-unix/:/tmp/.X11-unix/ -e DISPLAY=$DISPLAY --shm-size=64g openvino/ubuntu18_dev /bin/bash
3.模型转换
python3 /opt/intel/openvino_2021.4.689/deployment_tools/model_optimizer/mo_onnx.py --input_model yolox_s_sim_modify.onnx --input_shape [1,3,640,640] --output_dir ./
将使用的部署框架安装好之后按照下面的流程即可完成运行
mkdir build && cd build
cmake ..
make
./demo