Skip to content

Commit

Permalink
llm : add Refact model (ggerganov#3329)
Browse files Browse the repository at this point in the history
* add refact model

* resolve comments

* rebase to the latest

* solve alibi cpu error

---------

Co-authored-by: Georgi Gerganov <[email protected]>
  • Loading branch information
2 people authored and yusiwen committed Oct 7, 2023
1 parent 2d94a53 commit f054cdf
Show file tree
Hide file tree
Showing 4 changed files with 723 additions and 10 deletions.
318 changes: 318 additions & 0 deletions convert-refact-hf-to-gguf.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,318 @@
#!/usr/bin/env python3
# HF refact--> gguf conversion

from __future__ import annotations

import argparse
import json
import os
import sys
from pathlib import Path

import numpy as np
import torch
from transformers import AutoTokenizer # type: ignore[import]

if "NO_LOCAL_GGUF" not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / "gguf-py" / "gguf"))
import gguf


def bytes_to_unicode():
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
"""
Returns list of utf-8 byte and a corresponding list of unicode strings.
The reversible bpe codes work on unicode strings.
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
This is a significant percentage of your normal, say, 32K bpe vocab.
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
And avoids mapping to whitespace/control characters the bpe code barfs on.
"""
bs = (
list(range(ord("!"), ord("~") + 1))
+ list(range(ord("¡"), ord("¬") + 1))
+ list(range(ord("®"), ord("ÿ") + 1))
)
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8 + n)
n += 1
return dict(zip(bs, (chr(n) for n in cs)))


def count_model_parts(dir_model: Path) -> int:
num_parts = 0
for filename in os.listdir(dir_model):
if filename.startswith("pytorch_model-"):
num_parts += 1

if num_parts > 0:
print("gguf: found " + str(num_parts) + " model parts")
return num_parts


def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(
description="Convert a Refact model to a GGML compatible file"
)
parser.add_argument(
"--vocab-only",
action="store_true",
help="extract only the vocab",
)
parser.add_argument(
"--outfile",
type=Path,
help="path to write to; default: based on input",
)
parser.add_argument(
"model",
type=Path,
help="directory containing model file, or model file itself (*.bin)",
)
parser.add_argument(
"ftype",
type=int,
choices=[0, 1],
default=1,
nargs="?",
help="output format - use 0 for float32, 1 for float16",
)
return parser.parse_args()


args = parse_args()

dir_model = args.model
ftype = args.ftype
if not dir_model.is_dir():
print(f"Error: {args.model} is not a directory", file=sys.stderr)
sys.exit(1)

# possible tensor data types
# ftype == 0 -> float32
# ftype == 1 -> float16

# map from ftype to string
ftype_str = ["f32", "f16"]

if args.outfile is not None:
fname_out = args.outfile
else:
# output in the same directory as the model by default
fname_out = dir_model / f"ggml-model-{ftype_str[ftype]}.gguf"

print("gguf: loading model " + dir_model.name)

with open(dir_model / "config.json", "r", encoding="utf-8") as f:
hparams = json.load(f)

if hparams["architectures"][0] != "GPTRefactForCausalLM":
print("Model architecture not supported: " + hparams["architectures"][0])

sys.exit(1)

# get number of model parts
num_parts = count_model_parts(dir_model)

ARCH = gguf.MODEL_ARCH.REFACT
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])

print("gguf: get model metadata")

# Get refact feed forward dimension
hidden_dim = hparams["n_embd"]
inner_dim = 4 * hidden_dim
hidden_dim = int(2 * inner_dim / 3)
multiple_of = 256
ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)

block_count = hparams["n_layer"]

gguf_writer.add_name("Refact")
# refact uses Alibi. So this is from config.json which might be used by training.
gguf_writer.add_context_length(hparams["n_positions"])
gguf_writer.add_embedding_length(hparams["n_embd"])

gguf_writer.add_feed_forward_length(ff_dim)
gguf_writer.add_block_count(block_count)
gguf_writer.add_head_count(hparams["n_head"])
gguf_writer.add_head_count_kv(1)
gguf_writer.add_layer_norm_rms_eps(hparams["layer_norm_epsilon"])
gguf_writer.add_file_type(ftype)

# TOKENIZATION

print("gguf: get tokenizer metadata")

tokens: list[bytearray] = []
scores: list[float] = []
toktypes: list[int] = []

tokenizer_json_file = dir_model / "tokenizer.json"
if not tokenizer_json_file.is_file():
print(f"Error: Missing {tokenizer_json_file}", file=sys.stderr)
sys.exit(1)

# gpt2 tokenizer
gguf_writer.add_tokenizer_model("gpt2")

with open(tokenizer_json_file, "r", encoding="utf-8") as f:
tokenizer_json = json.load(f)

print("gguf: get gpt2 tokenizer vocab")

# The number of tokens in tokenizer.json can differ from the expected vocab size.
# This causes downstream issues with mismatched tensor sizes when running the inference
vocab_size = (
hparams["vocab_size"]
if "vocab_size" in hparams
else len(tokenizer_json["model"]["vocab"])
)

tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)

reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
byte_encoder = bytes_to_unicode()
byte_decoder = {v: k for k, v in byte_encoder.items()}

for i in range(vocab_size):
if i in reverse_vocab:
text = reverse_vocab[i]
try:
text = bytearray([byte_decoder[c] for c in reverse_vocab[i]])
except KeyError:
text = bytearray()
for c in reverse_vocab[i]:
if ord(c) < 256: # single byte character
text.append(byte_decoder[ord(c)])
else: # multibyte special token character
text.extend(c.encode("utf-8"))
else:
print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.")
pad_token = f"[PAD{i}]".encode("utf8")
text = bytearray(pad_token)

tokens.append(text)
scores.append(0.0) # dymmy
toktypes.append(gguf.TokenType.NORMAL) # dummy

gguf_writer.add_token_list(tokens)
gguf_writer.add_token_scores(scores)
gguf_writer.add_token_types(toktypes)

special_vocab = gguf.SpecialVocab(dir_model, load_merges=True)
special_vocab.add_to_gguf(gguf_writer)

# TENSORS

tensor_map = gguf.get_tensor_name_map(ARCH, block_count)

# params for qkv transform
n_head = hparams["n_head"]
n_head_kv = 1

head_dim = hparams["n_embd"] // n_head

# tensor info
print("gguf: get tensor metadata")

if num_parts == 0:
part_names = iter(("pytorch_model.bin",))
else:
part_names = (
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
)
for part_name in part_names:
if args.vocab_only:
break
print("gguf: loading model part '" + part_name + "'")
model_part = torch.load(dir_model / part_name, map_location="cpu")

for i in range(block_count):
if f"transformer.h.{i}.attn.kv.weight" in model_part:
data = model_part[f"transformer.h.{i}.attn.kv.weight"]
model_part[f"model.layers.{i}.self_attn.k_proj.weight"] = data[
: n_head_kv * head_dim
]
model_part[f"model.layers.{i}.self_attn.v_proj.weight"] = data[
n_head_kv * head_dim :
]
del model_part[f"transformer.h.{i}.attn.kv.weight"]
if f"transformer.h.{i}.attn.q.weight" in model_part:
model_part[f"model.layers.{i}.self_attn.q_proj.weight"] = model_part[
f"transformer.h.{i}.attn.q.weight"
]
del model_part[f"transformer.h.{i}.attn.q.weight"]
if f"transformer.h.{i}.mlp.gate_up_proj.weight" in model_part:
data = model_part[f"transformer.h.{i}.mlp.gate_up_proj.weight"]
model_part[f"model.layers.{i}.mlp.gate_proj.weight"] = data[:ff_dim]
model_part[f"model.layers.{i}.mlp.up_proj.weight"] = data[ff_dim:]
del model_part[f"transformer.h.{i}.mlp.gate_up_proj.weight"]

for name in model_part.keys():
data = model_part[name]

old_dtype = data.dtype

# convert any unsupported data types to float32
if data.dtype != torch.float16 and data.dtype != torch.float32:
data = data.to(torch.float32)

data = data.squeeze().numpy()

# map tensor names
new_name = tensor_map.get_name(name, try_suffixes=(".weight",))
if new_name is None:
print("Can not map tensor '" + name + "'")
sys.exit()

n_dims = len(data.shape)
data_dtype = data.dtype

# if f32 desired, convert any float16 to float32
if ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)

# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
data = data.astype(np.float32)

# if f16 desired, convert any float32 2-dim weight tensors to float16
if (
ftype == 1
and data_dtype == np.float32
and name.endswith(".weight")
and n_dims == 2
):
data = data.astype(np.float16)

print(
new_name
+ ", n_dims = "
+ str(n_dims)
+ ", "
+ str(old_dtype)
+ " --> "
+ str(data.dtype)
)

gguf_writer.add_tensor(new_name, data)


print("gguf: write header")
gguf_writer.write_header_to_file()
print("gguf: write metadata")
gguf_writer.write_kv_data_to_file()
if not args.vocab_only:
print("gguf: write tensors")
gguf_writer.write_tensors_to_file()

gguf_writer.close()

print(f"gguf: model successfully exported to '{fname_out}'")
print("")
2 changes: 0 additions & 2 deletions ggml.c
Original file line number Diff line number Diff line change
Expand Up @@ -13082,7 +13082,6 @@ static void ggml_compute_forward_alibi_f32(
return;
}

const int n_past = ((int32_t *) dst->op_params)[0];
const int n_head = ((int32_t *) dst->op_params)[1];
float max_bias;
memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
Expand All @@ -13103,7 +13102,6 @@ static void ggml_compute_forward_alibi_f32(
//const int nb3 = src0->nb[3];

GGML_ASSERT(nb0 == sizeof(float));
GGML_ASSERT(ne1 + n_past == ne0);
GGML_ASSERT(n_head == ne2);

// add alibi to src0 (KQ_scaled)
Expand Down
Loading

0 comments on commit f054cdf

Please sign in to comment.