The Morpheus visualization library defines a simple chart abstraction API with adapters supporting both
JFreeChart as well as Google Charts (with others
to follow by popular demand). This design makes it possible to generate interactive Java Swing
charts as well as HTML5 browser based charts via the same API. By default, the framework is configured to use the JFreeChart
adapter, however this can be re-configured on a global basis by calling either htmlMode()
or swingMode()
as shown
below.
//Switch chart adapter to HTML mode globally
Chart.create().htmlMode();
//Switch chart adapter to SWING mode globally
Chart.create().swingMode();
It is also possible to operate in mixed mode from within the the same application rather than switching the adapter
globally. By explicitly calling asHtml()
or asSwing()
prior to invoking one of the plotting functions on the Chart
interface, Html and Swing based charts can be generated from within the same application as shown below.
//Create chart using SWING adapter
Chart.create().asSwing().withLinePlot(frame, chart -> {
chart.title().withText("Chart Title Goes Here...");
chart.legend().on().bottom();
chart.show();
});
//Create chart using HTML adapter
Chart.create().asHtml().withLinePlot(frame, chart -> {
chart.title().withText("Chart Title Goes Here...");
chart.legend().on().bottom();
chart.show();
});
The following sections demonstrate how to use the Morpheus charting API, and provide various examples of what kind of charts are supported. The illustrations below are PNG files generated using the JFreeChart adapter, however a gallery of the same plots generated via the Google adapter show just how similar the plots from the two implementations are. While most of the functionality exposed by the Morpheus Charting API are supported by both adapters, there are some gaps in the Google adapter which are documented below.
Consider the DataFrame
below with dimensions 1000x1
which has a row axis of type LocalDate
and 1 column of
double precision values representing the cumulative sum of an Array
of normally distributed random values. The first
10 rows of this frame are printed below.
import com.zavtech.morpheus.array.Array;
import com.zavtech.morpheus.frame.DataFrame;
int rowCount = 1000;
LocalDate startDate = LocalDate.of(2013, 1, 1);
Range<LocalDate> dates = Range.of(0, rowCount).map(startDate::plusDays);
DataFrame<LocalDate,String> frame = DataFrame.of(dates, String.class, columns -> {
columns.add("A", Array.randn(rowCount).cumSum());
});
Index | A | ------------------------------ 2013-01-01 | 0.58638321 | 2013-01-02 | -0.44176283 | 2013-01-03 | -0.07187819 | 2013-01-04 | -1.31157143 | 2013-01-05 | -1.69375864 | 2013-01-06 | -2.23840733 | 2013-01-07 | -2.42279587 | 2013-01-08 | -2.95871372 | 2013-01-09 | -3.63748847 |
To generate an line plot of this series, we can use the dates in the DataFrame
row axis as the x-values, and
the numeric values in column A
as the range or y-values. The withLines()
method on the ChartFactory
interface
expects the DataFrame
containing the data to plot, and a Consumer
which is used to configure various features of
the chart. In the example below, we simply display the chart with no further customization by calling show()
.
Chart.create().withLinePlot(frame, chart -> {
chart.show();
});
A common scenario is to generate an line plot where the domain or x-axis is based on data in a specific column of the frame
rather than the row axis as in the previous example. This can be done by passing the label of the column to use for
the domain axis to the withLines()
method. In the example below, we create a similar dataset to above but with dimensions
1000x5
, and in this case the row axis is simply a sequence of integers with the dates included as a column keyed as DataDate
.
int rowCount = 1000;
LocalDate startDate = LocalDate.of(2013, 1, 1);
Range<Integer> rowKeys = Range.of(0, rowCount);
Range<LocalDate> dates = rowKeys.map(startDate::plusDays);
DataFrame<Integer,String> frame = DataFrame.of(rowKeys, String.class, columns -> {
columns.add("DataDate", dates);
Stream.of("A", "B", "C", "D").forEach(label -> {
columns.add(label, Array.randn(rowCount).cumSum());
});
});
Index | DataDate | A | B | C | D | --------------------------------------------------------------------------------------- 0 | 2013-01-01 | 1.29439793 | -0.91248479 | -0.51141634 | 0.45271667 | 1 | 2013-01-02 | 1.04502117 | -1.5841936 | 1.04050209 | 0.3773374 | 2 | 2013-01-03 | 3.0924616 | -2.35489228 | 3.35960923 | -1.52130364 | 3 | 2013-01-04 | 2.58882443 | -1.80476051 | 3.79982322 | -2.03083571 | 4 | 2013-01-05 | 2.95265199 | -3.22752153 | 4.92200533 | -0.05268766 | 5 | 2013-01-06 | 2.54600084 | -3.46228629 | 3.34627638 | -0.73170641 | 6 | 2013-01-07 | 2.11506239 | -3.34459359 | 3.68209019 | -0.80961531 | 7 | 2013-01-08 | 3.1889199 | -3.75034967 | 3.7681561 | 0.0668972 | 8 | 2013-01-09 | 4.83991797 | -3.21969887 | 2.99041415 | 0.89681662 | 9 | 2013-01-10 | 4.33025037 | -2.65846363 | 2.44799574 | 0.62896343 |
Given that we are plotting multiple series, we also turn on the chart legend, and place it at the bottom of the chart.
Chart.create().withLinePlot(frame, "DataDate", chart -> {
chart.legend().on().bottom();
chart.show();
});
Extending the prior example, below we generate the same 1000x5
dataset but add an additional column post construction
which represents the sum of values in each row. In addition, we add text to the chart in the form of a title,
subtitle, x-axis and y-axis label. Finally, we explicitly configure the chart to render the Total
column
in black, and using a thicker point size to make it distinguishable from the other series.
int rowCount = 1000;
LocalDate startDate = LocalDate.of(2013, 1, 1);
Range<Integer> rowKeys = Range.of(0, rowCount);
Range<LocalDate> dates = rowKeys.map(startDate::plusDays);
DataFrame<Integer,String> frame = DataFrame.of(rowKeys, String.class, columns -> {
columns.add("DataDate", dates);
Stream.of("A", "B", "C", "D").forEach(label -> {
columns.add(label, Array.randn(rowCount).cumSum());
});
});
//Add a total column that sumns A+B+C+D
frame.cols().add("Total", Double.class, v -> v.row().stats().sum());
Index | DataDate | A | B | C | D | Total | ------------------------------------------------------------------------------------------------------- 0 | 2013-01-01 | 1.25934218 | 0.69220501 | -0.31238595 | -0.56357062 | 1.07559062 | 1 | 2013-01-02 | 2.29908995 | 0.17146519 | -1.60587813 | 0.05049886 | 0.91517587 | 2 | 2013-01-03 | 2.28895812 | 0.19584665 | -1.81601295 | -0.93573356 | -0.26694175 | 3 | 2013-01-04 | 0.5587514 | 1.73915178 | 0.29149944 | -0.29126603 | 2.29813659 | 4 | 2013-01-05 | 2.11189209 | 0.72883374 | 0.22025859 | -0.15000083 | 2.91098359 | 5 | 2013-01-06 | 2.26632523 | -0.65280247 | -0.48525074 | 1.66929384 | 2.79756585 | 6 | 2013-01-07 | 3.32634531 | -0.37416553 | -0.71419742 | 0.73102638 | 2.96900874 | 7 | 2013-01-08 | 2.85345213 | 1.50372178 | 1.14531164 | 1.84564308 | 7.34812862 | 8 | 2013-01-09 | 1.70266008 | 1.20891251 | 0.87620806 | -1.10380341 | 2.68397724 | 9 | 2013-01-10 | 1.90697991 | 2.20887263 | -1.22202884 | -0.30028665 | 2.59353704 |
Chart.create().withLinePlot(frame, "DataDate", chart -> {
chart.title().withText("Example Time Series Chart");
chart.subtitle().withText("Cumulative Sum of Random Normal Data");
chart.plot().axes().domain().label().withText("Data Date");
chart.plot().axes().range(0).label().withText("Random Value");
chart.plot().style("Total").withLineWidth(2f).withColor(Color.BLACK);
chart.legend().on();
chart.show();
});
It is often useful to be able to plot multiple series on the same chart even when those series happen to have very
different scales. This is supported by the Morpheus charting API in that is is possible to add many DataFrames
to
a single chart, and each frame can be found to its own range axis.
Below we create a frame similar to prior examples, however we impose a larger scale on series C
and D
compared
with A
and B
. If we plotted this as a single frame, the scale of C
and D
would dominate and it would be hard
to see changes in A
and B
. In order to address this, we filter the frame into 2 sets of columns, and bind the
second DataFrame
to a secondary axis via the setRangeAxis()
method. The arguments to this method are the dataset
index, and the index of the range axis to bind it to. In principal you can bind as many frames to as many axis, however
this would rapidly become hard to read.
int rowCount = 1000;
Range<Integer> rowKeys = Range.of(0, rowCount);
DataFrame<Integer,String> frame = DataFrame.of(rowKeys, String.class, columns -> {
Stream.of("A", "B").forEach(c -> columns.add(c, Array.randn(rowCount).cumSum()));
Stream.of("C", "D").forEach(c -> {
columns.add(c, Array.randn(rowCount).mapToDoubles(v -> v.getDouble() * 100).cumSum());
});
});
Chart.create().withLinePlot(frame.cols().select("A", "B"), chart -> {
chart.plot().data().add(frame.cols().select("C", "D"));
chart.plot().data().setRangeAxis(1, 1);
chart.title().withText("Time Series Chart - Multiple Axis");
chart.subtitle().withText("Cumulative Sum of Random Normal Data");
chart.plot().axes().domain().label().withText("Data Date");
chart.plot().axes().range(0).label().withText("Random Value-1");
chart.plot().axes().range(1).label().withText("Random Value-2");
chart.legend().on();
chart.show();
});
In the prior example, the idea that multiple DataFrames
can be added to a chart was introduced in order to demonstrate
how to bind different data series to different axis. This same idea can be used to bind different rendering strategies
to different series.
In the example below, we generate a DataFrame
with dimensions 20x6
and then plot this data by filtering the frame
into 3 pairs of columns and use different rendering strategies to draw each pair of series. The first frame containing
columns A
and B
is plotted with straight lines and shapes rendered at each datum. The second frame containing
columns C
and D
is plotted with a spline renderer thereby yielding the smooth trajectory for these series. Finally,
the third frame is rendered with dashed lines and no shapes at the datum points.
int rowCount = 20;
Range<Integer> rowKeys = Range.of(0, rowCount);
DataFrame<Integer,String> frame = DataFrame.of(rowKeys, String.class, columns -> {
Stream.of("A", "B", "C", "D", "E", "F").forEach(label -> {
columns.add(label, Array.randn(rowCount).cumSum());
});
});
Chart.create().withLinePlot(frame.cols().select("A", "B"), chart -> {
chart.plot().data().add(frame.cols().select("C", "D"));
chart.plot().data().add(frame.cols().select("E", "F"));
chart.plot().render(0).withLines(true, false);
chart.plot().render(1).withSpline(false, false);
chart.plot().render(2).withLines(false, true);
chart.title().withText("Time Series Chart - Multiple Renderers");
chart.subtitle().withText("Cumulative Sum of Random Normal Data");
chart.plot().axes().domain().label().withText("Data Date");
chart.plot().axes().range(0).label().withText("Random Value");
chart.legend().on();
chart.show();
});
To create bar charts with Morpheus we use an identical API as in the prior examples, but in this case we simply make a
call to Chart.ofBars()
instead of Chart.ofLines()
. Plotting a DataFrame
where the domain axis is initialized
from the row axis keys or alternatively a column of data in the frame works the same way. In the example below we
generate a bar chart based on a discrete or categorical domain axis using the frame row axis of type Year
.
Generating bar charts based on continuous data is also possible and is demonstrated in the next example.
Range<Year> years = Range.of(2000, 2006).map(Year::of);
DataFrame<Year,String> data = DataFrame.of(years, String.class, columns -> {
Stream.of("A", "B", "C", "D").forEach(label -> {
columns.add(label, Array.of(Double.class, 6).applyDoubles(v -> Math.random()).cumSum());
});
});
Chart.create().withBarPlot(data, false, chart -> {
chart.plot().axes().domain().label().withText("Year");
chart.plot().axes().range(0).label().withText("Random Value");
chart.title().withText("Bar Chart - Categorical Domain Axis");
chart.subtitle().withText("Cumulative Sum of Random Uniform Data");
chart.legend().on();
chart.show();
});
Switching to a horizontal orientation can be done by simply calling the orient().horizontal()
method as shown below.
Chart.create().withBarPlot(data, false, chart -> {
chart.plot().orient().horizontal();
chart.plot().axes().domain().label().withText("Year");
chart.plot().axes().range(0).label().withText("Random Value");
chart.title().withText("Bar Chart - Categorical Domain Axis");
chart.subtitle().withText("Cumulative Sum of Random Uniform Data");
chart.legend().on();
chart.show();
});
Bar charts are often used to display categorical or discrete data, however there are scenarios where a continuous variable in the domain axis is appropriate. In such cases, the question is how wide to make the bars? In a discrete variable bar chart, the width of the bars is sized so that all content fits on the plot, so it is a function of how many discrete observations and series exist in the data. When creating a bar chart with a continuous variable in the domain, we need to be explicit about how wide we want to make the bars, otherwise they will get represented as single vertical line.
Consider the DataFrame
below with dimensions of 20x1
and a row axis of type LocalDateTime
where the row key
interval is 10 minutes wide. The data series A
is simply initialized to the sum of a randomly generated array of
values, and the first 10 rows of this frame are shown below.
int rowCount = 20;
LocalDateTime start = LocalDateTime.of(2014, 1, 1, 8, 30);
Range<LocalDateTime> rowKeys = Range.of(0, rowCount).map(i -> start.plusMinutes(i * 10));
DataFrame<LocalDateTime,String> frame = DataFrame.of(rowKeys, String.class, columns -> {
columns.add("A", Array.of(Double.class, rowCount).applyDoubles(v -> Math.random()).cumSum());
});
Index | A | -------------------------------------- 2014-01-01T08:30:00 | 0.27653233 | 2014-01-01T08:40:00 | 0.63501106 | 2014-01-01T08:50:00 | 1.19265518 | 2014-01-01T09:00:00 | 1.9021335 | 2014-01-01T09:10:00 | 2.32102833 | 2014-01-01T09:20:00 | 3.02188896 | 2014-01-01T09:30:00 | 3.08679679 | 2014-01-01T09:40:00 | 3.43408424 | 2014-01-01T09:50:00 | 4.35521882 | 2014-01-01T10:00:00 | 5.13252283 |
If we simply plot this as a bar chart in the usual fashion as per the code below, we end up with a plot where each
observation is represented by a vertical bar at each point in time that is 1 pixel wide. This may indeed be the result
one desires, but given that this DataFrame
most likely represents some cumulative observations for each 10 minute
interval, it would be nice to explicitly make the bars 10 minutes wide.
Chart.create().withBarPlot(frame, false, chart -> {
chart.plot().axes().domain().label().withText("Year");
chart.plot().axes().range(0).label().withText("Random Value");
chart.title().withText("Bar Chart - Continuous Domain Axis");
chart.subtitle().withText("Cumulative Sum of Random Uniform Data");
chart.legend().on();
chart.show();
});
Thankfully this can be achieved very easily through the API, namely via two methods on the ChartModel
interface
called withLowerDomainInterval()
and withUpperDomainInterval()
which each accept a lambda expression with an
adjustment function. In this particular example, let us assume that the instantaneous times in the DataFrame
row
axis are the end of the measurement intervals, so the values in series A
represent the aggregate values for the
prior 10 minutes. We therefore bind an adjustment function that subtracts 10 minutes from row keys as shown in the
code example below, with a call to withLowerDomainInterval()
.
Chart.create().withBarPlot(frame, false, chart -> {
chart.plot().data().at(0).withLowerDomainInterval(t -> t.minusMinutes(10));
chart.plot().axes().domain().label().withText("Year");
chart.plot().axes().range(0).label().withText("Random Value");
chart.title().withText("Bar Chart - Continuous Domain Axis");
chart.subtitle().withText("Cumulative Sum of Random Uniform Data");
chart.legend().on();
chart.show();
});
The flexibility of the withLowerDomainInterval()
and withUpperDomainInterval()
methods means lambdas with any
degree of complexity can be used to change the width of bars, and even make variable width bars on the same plot.
Stacked bar charts are useful for visualizing the decomposition of some quantity into various sub-categories. For
example, it might be useful to decompose the total revenue of a company into various product and service categories
to visualize how well balanced revenue sources are. Creating a stacked bar plot with the Morpheus API simply boils
down to passing true
for the second argument of the withBarPlot()
function. To illustrate, consider a DataFrame
with 10 rows and 5 columns of randomly initialized values which can be generated as follows.
Range<Year> years = Range.of(2000, 2010).map(Year::of);
DataFrame<Year,String> frame = DataFrame.of(years, String.class, columns -> {
Stream.of("A", "B", "C", "D", "E", "F", "G").forEach(label -> {
columns.add(label, Array.randn(10).applyDoubles(v -> Math.abs(v.getDouble())).cumSum());
});
});
Index | A | B | C | D | E | F | G | -------------------------------------------------------------------------------------------------------------------- 2000 | 1.31995055 | 0.53881463 | 0.3279245 | 0.11259494 | 1.67395423 | 0.18586162 | 0.87989445 | 2001 | 1.72056405 | 1.68922095 | 0.49067667 | 0.23015735 | 2.13037774 | 0.44835517 | 1.36713607 | 2002 | 2.79809076 | 3.94390632 | 3.30168445 | 1.29757044 | 3.06911301 | 0.9306128 | 1.80211665 | 2003 | 3.59071864 | 5.88855153 | 4.37231856 | 2.52348568 | 4.7653336 | 0.94635161 | 3.99710948 | 2004 | 6.08102384 | 7.7523729 | 4.5286778 | 2.59847512 | 4.85460383 | 2.42353332 | 5.06462412 | 2005 | 6.55934094 | 9.17683641 | 6.23641685 | 3.34769981 | 4.96006758 | 3.0262002 | 5.14085585 | 2006 | 7.60618601 | 9.59875411 | 6.42311354 | 3.58823615 | 5.81808152 | 3.59782465 | 6.08934143 | 2007 | 8.50669158 | 10.79619646 | 8.76745963 | 4.71219626 | 6.06259072 | 4.7197505 | 6.80808702 | 2008 | 9.3043879 | 10.98733186 | 9.91013585 | 5.78904589 | 7.63390658 | 6.01700338 | 8.27038276 | 2009 | 9.40761316 | 11.53533956 | 10.32051078 | 5.85462161 | 8.54673512 | 6.1083706 | 9.53989261 |
We can plot this data using stacked bars with the following code:
Chart.create().withBarPlot(frame, true, chart -> {
chart.plot().axes().domain().label().withText("Year");
chart.plot().axes().range(0).label().withText("Random Value");
chart.title().withText("Stacked Bar Chart - Categorical Domain Axis");
chart.subtitle().withText("Cumulative Sum of Random Uniform Data");
chart.legend().on();
chart.show();
});
Switching to a horizontal orientation can be done by simply calling the orient().horizontal()
method as shown below.
Chart.create().withBarPlot(frame, true, chart -> {
chart.plot().axes().domain().label().withText("Year");
chart.plot().axes().range(0).label().withText("Random Value");
chart.plot().orient().horizontal();
chart.title().withText("Stacked Bar Chart - Categorical Domain Axis");
chart.subtitle().withText("Cumulative Sum of Random Uniform Data");
chart.legend().on();
chart.show();
});
Stacked bar charts involving a continuous domain axis are also supported, much the same way as in the simple bar plot example
discussed earlier. In order to control the width of the bars, it is necessary to inject a function that expresses the
domain interval for each datum in the domain. The bar width can be tailored by applying either a lower internal, upper interval
or both to each observation in the dataset. In the example below we create a DataFrame
with datetimes to serve as the domain,
and then proceed to make the bars 10 minutes wide by injecting a lower domain interval function:
int rowCount = 40;
LocalDateTime start = LocalDateTime.of(2014, 1, 1, 8, 30);
Range<LocalDateTime> rowKeys = Range.of(0, rowCount).map(i -> start.plusMinutes(i * 10));
DataFrame<LocalDateTime,String> frame = DataFrame.of(rowKeys, String.class, columns -> {
Stream.of("A", "B", "C", "D", "E", "F").forEach(label -> {
columns.add(label, Array.randn(40, 1, 5).cumSum());
});
});
Chart.create().withBarPlot(frame, true, chart -> {
chart.plot().data().at(0).withLowerDomainInterval(t -> t.minusMinutes(10));
chart.plot().axes().domain().label().withText("Year");
chart.plot().axes().range(0).label().withText("Random Value");
chart.title().withText("Stacked Bar Chart - Continuous Domain Axis");
chart.subtitle().withText("Random Uniform Data");
chart.legend().on();
chart.show();
});
Compatibility Note: The Google Chart adapter does not support lower / upper domain interval functions as the underlying library
only supports the ability to specify inter-bar spacing. Bar plots created by the Google adapter that involve a continuous
domain axis, stacked or otherwise, will by default render bars with no spacing between them, which for the most part seems
like an appropriate strategy for most scenarios. Calling withLowerDomainInterval()
or withUpperDomainInterval()
with the
Google adapter will not have any effect on the output. Future support for more customizable HTML charting libraries may
address this limitation.
The Morpheus Charting API includes some convenience functions to plot frequency distributions of column data in a
DataFrame
. In the example below we generate a single column 1000000x1
frame of data randomly generated from a
standard normal distribution. Calling withHistPlot()
and indicating the number of bins, 50 in this case, yields
the plot below.
int recordCount = 1000000;
DataFrame<Integer,String> frame = DataFrame.of(Range.of(0, recordCount), String.class, columns -> {
columns.add("A", Array.randn(recordCount));
});
Chart.create().withHistPlot(frame, 50, chart -> {
chart.title().withText("Normal Distribution");
chart.subtitle().withText("Single Distribution");
chart.show();
});
A slight extension of the prior example is to consider a frequency distribution involving multiple series. In this case we
create a DataFrame
with 4 columns, where each column of 1 million observations is initialized from a normal distribution
all with a mean of zero but different standard deviations. The different spreads of each series requires bins to be computed
on a per series basis, as it would not be optimal to create one set of bins across all series. We call the same withHistPlot()
function as before, and in this example we generate 100 bins per series to yield the plot below.
int recordCount = 1000000;
DataFrame<Integer,String> frame = DataFrame.of(Range.of(0, recordCount), String.class, columns -> {
columns.add("A", Array.randn(recordCount, 0d, 1d));
columns.add("B", Array.randn(recordCount, 0d, 0.8d));
columns.add("C", Array.randn(recordCount, 0d, 0.6d));
columns.add("D", Array.randn(recordCount, 0d, 0.4d));
});
Chart.create().withHistPlot(frame, 100, chart -> {
chart.title().withText("Normal Distribution");
chart.subtitle().withText("Multiple Distributions");
chart.legend().on();
chart.show();
});
To demonstrate scatter plots, consider the random data generating function defined below, which yields an nx2
DataFrame
with a column of X
and Y
values based on a linear model with noise. The method expects the intercept
(alpha
), slope (beta
), the standard deviation for the noise term (sigma
), the step size for the domain interval
and the number of data points to generate. The table below illustrates the basic structure of the data.
/**
* Returns a 2D sample dataset given a slope and intercept while adding white noise based on sigma.
* @param alpha the intercept term for data
* @param beta the slope term for for data
* @param sigma the standard deviation for noise
* @param stepSize the step size for domain variable
* @param n the size of the sample to generate
* @return the frame of XY values
*/
private DataFrame<Integer,String> sample(double alpha, double beta, double sigma, double stepSize, int n) {
final Array<Double> xValues = Array.of(Double.class, n).applyDoubles(v -> 0d + v.index() * stepSize);
final Array<Double> yValues = Array.of(Double.class, n).applyDoubles(v -> {
final double yfit = alpha + beta * xValues.getDouble(v.index());
return new NormalDistribution(yfit, sigma).sample();
});
final Array<Integer> rowKeys = Range.of(0, n).toArray();
return DataFrame.of(rowKeys, String.class, columns -> {
columns.add("X", xValues);
columns.add("Y", yValues);
}).cols().demean(true);
}
Index | X | Y | ----------------------------------------- 0 | -249.7500 | -134.80224667 | 1 | -249.2500 | -120.77578676 | 2 | -248.7500 | -119.33607918 | 3 | -248.2500 | -126.59963476 | 4 | -247.7500 | -131.08470325 | 5 | -247.2500 | -120.08991786 | 6 | -246.7500 | -124.15182976 | 7 | -246.2500 | -115.3617302 | 8 | -245.7500 | -119.0303664 | 9 | -245.2500 | -141.49936933 |
The following examples leverage this data generating function to create various scatter plots.
The example below generates a 1000 point sample dataset using our data generating function, and creates a scatter plot
via the withScatterPlot()
method using the column labelled X
for the domain axis.
DataFrame<Integer,String> frame = scatter(4d, 0.5d, 20d, 0.5, 1000);
Chart.create().withScatterPlot(frame, false, "X", chart -> {
chart.plot().axes().domain().label().withText("X-Value");
chart.plot().axes().range(0).label().withText("Y-Value");
chart.title().withText("Scatter Chart");
chart.subtitle().withText("Single DataFrame, Single Series");
chart.show();
});
Below we combine 3 DataFrames
using our data generating function and re-label the various Y
columns A
,
B
and C
respectively so that they are distinct in the combined frame. We plot the result using withScatterPlot()
in this case, and proceed to set specific colors for each series, and configure the C
series to render with a
diamond shape. Note that when we combine the frames, the 3 versions of the X
column collapses into a single
column in the resulting frame based on a combine first rule. Since all 3 frames have identical x-values, this is
immaterial in this case.
DataFrame<Integer,String> frame = DataFrame.concatColumns(
scatter(4d, 1d, 80d, 0.5, 500).cols().replaceKey("Y", "A"),
scatter(4d, 6d, 100d, 0.5, 500).cols().replaceKey("Y", "B"),
scatter(4d, 12d, 180d, 0.5, 500).cols().replaceKey("Y", "C")
);
Chart.create().withScatterPlot(frame, false, "X", chart -> {
chart.plot().axes().domain().label().withText("X-Value");
chart.plot().axes().range(0).label().withText("Y-Value");
chart.plot().style("A").withColor(new Color(255, 225, 25));
chart.plot().style("B").withColor(new Color(0, 130, 200));
chart.plot().style("C").withColor(new Color(245, 0, 48));
chart.title().withText("Scatter Chart");
chart.subtitle().withText("Single DataFrame, Multiple Series, Custom Style");
chart.legend().on();
chart.show();
});
Consider a scenario where you have results from multiple experiments which you would like to combine in a scatter
chart, and while the measurements share the same domain (i.e. x-dimension), the actual observations of x
are
not the same across the samples. It is possible to create a single sparse DataFrame
with all the results combined,
however it is most likely to be more convenient to keep them separate.
In the example below we generate two DataFrames
, each containing two series, and the x-values between the two frames
are not coincident since we provide a different step size to our data generating function in each case. We can still
plot both frames together with very little additional effort, namely by adding the second frame and instructing the chart
to also render it with dots as follows.
DataFrame<Integer,String> frame1 = DataFrame.concatColumns(
sample(4d, 1d, 80d, 0.5, 500).cols().replaceKey("Y", "A"),
sample(4d, 3d, 100d, 0.5, 500).cols().replaceKey("Y", "B")
);
DataFrame<Integer,String> frame2 = DataFrame.concatColumns(
sample(4d, 7d, 80d, 0.55, 600).cols().replaceKey("Y", "C"),
sample(4d, -10d, 100d, 0.55, 600).cols().replaceKey("Y", "D")
);
Chart.create().withScatterPlot(frame1, false, "X", chart -> {
chart.plot().data().add(frame2, "X");
chart.plot().render(1).withDots();
chart.plot().axes().domain().label().withText("X-Value");
chart.plot().axes().range(0).label().withText("Y-Value");
chart.title().withText("Scatter Chart");
chart.subtitle().withText("Multiple DataFrames, Multiple Series");
chart.legend().on();
chart.show();
});
The Morpheus charting API supports fitting a linear trendline to a dataset based on an Ordinary Least Squares
regression model. Both the JFreeChart and Google adapters expose the model equation as a tooltip when hovering over
any of the data points that make up the trendline. By default, the trend line is rendered in black with a thicker
line stroke, however this can easily be adjusted using the standard series style()
controller.
In the example below we use the same data generating function introduced earlier, and the only additional call is to the
trend()
function which accepts the key of the series to which a linear model should be fitted. The resulting plot is shown
below with the standard style applied to the regression line.
DataFrame<Integer,String> frame = scatter(4d, 1d, 80d, 0.5d, 1000);
Chart.create().withScatterPlot(frame, false, "X", chart -> {
chart.plot().axes().domain().label().withText("X-Value");
chart.plot().axes().range(0).label().withText("Y-Value");
chart.plot().trend("Y");
chart.title().withText("Regression Chart");
chart.subtitle().withText("Single DataFrame, Single Series");
chart.show();
});
Fitting linear trend lines to multiple series or frames follows naturally through the same API as the single model
example. Below we generate two DataFrames
each of which has a non-intersecting set of domain values. By calling the
trend()
function on the plot and passing the relevant series keys across the two frames, trend lines are generated as
expected. Once again, the model equations are exposed via tooltips when hovering over data points that make up the
fitted line.
DataFrame<Integer,String> frame1 = DataFrame.concatColumns(
scatter(4d, 1d, 80d, 0.5, 500).cols().replaceKey("Y", "A"),
scatter(4d, 4d, 100d, 0.5, 500).cols().replaceKey("Y", "B")
);
DataFrame<Integer,String> frame2 = DataFrame.concatColumns(
scatter(4d, -3d, 80d, 0.55, 600).cols().replaceKey("Y", "C"),
scatter(4d, -10d, 100d, 0.45, 600).cols().replaceKey("Y", "D")
);
Chart.create().withScatterPlot(frame1, false, "X", chart -> {
chart.plot().<String>data().add(frame2, "X");
chart.plot().render(1).withDots();
chart.plot().axes().domain().label().withText("X-Value");
chart.plot().axes().range(0).label().withText("Y-Value");
chart.plot().trend("A");
chart.plot().trend("B");
chart.plot().trend("C");
chart.title().withText("Regression Chart");
chart.subtitle().withText("Multiple DataFrame, Multiple Series");
chart.legend().on();
chart.show();
});
An area chart is basically the same as a line chart however the area between the domain axis and the line is filled with a series specific color. There is one variation on this to note, which is that more often than not, area charts are generated as stacked areas, which is useful to visualize the decomposition of some aggregate quantity. The two examples below show a stacked and non-stacked area chart for the identical dataset.
int rowCount = 100;
Range<Integer> rowKeys = Range.of(0, rowCount);
DataFrame<Integer,String> frame = DataFrame.of(rowKeys, String.class, columns -> {
Stream.of("A", "B", "C", "D", "E").forEach(label -> {
columns.add(label, Array.randn(rowCount, 10d, 100d).cumSum());
});
});
Chart.create().withAreaPlot(frame, true, chart -> {
chart.plot().axes().domain().label().withText("X-Value");
chart.plot().axes().range(0).label().withText("Random Value");
chart.title().withText("Stacked Area Chart");
chart.subtitle().withText("Cumulative Sum of Random Normal Data");
chart.legend().on();
chart.show();
});
The following code plots the identical dataset but with overlapping areas rather than stacked (which is simply achieved by
passing stacked=false
to the withAreaPlot()
method) . Notice the different scale in the y-axis between the two plots, the
former being of a larger scale given the aggregate nature of that visualization.
int rowCount = 100;
Range<Integer> rowKeys = Range.of(0, rowCount);
DataFrame<Integer,String> frame = DataFrame.of(rowKeys, String.class, columns -> {
Stream.of("A", "B", "C", "D", "E").forEach(label -> {
columns.add(label, Array.randn(rowCount, 10d, 100d).cumSum());
});
});
Chart.create().withAreaPlot(frame, false, chart -> {
chart.plot().render(0).withArea(false);
chart.plot().axes().domain().label().withText("X-Value");
chart.plot().axes().range(0).label().withText("Random Value");
chart.title().withText("Overlapping Area Chart");
chart.subtitle().withText("Cumulative Sum of Random Normal Data");
chart.legend().on();
chart.show();
});
Pie charts are perhaps the simplest of all the plots, although there are a few customizations that are worth being
aware of. Generally speaking pie plots are used to illustrate the decomposition of some measurement into different
categories, and the Morpheus API allows a specific column of a DataFrame
to be presented in this way. Pie section
labels can be customized to show the actual value of the quantity, its percentage of the total or simply the name of
the category (which can also be shown via an optional legend).
Consider a single column DataFrame
of random values that we will assume represent some measurement for different
countries which we have defined as the row keys in terms of their 3-character ISO codes.
DataFrame<String,String> frame = DataFrame.ofDoubles(
Array.of("AUS", "GBR", "USA", "DEU", "ITA", "ESP", "ZAF"),
Array.of("Random"),
value -> Math.random() * 10d
);
Index | Random | ------------------------ AUS | 4.05807605 | GBR | 2.80847587 | USA | 2.92350137 | DEU | 3.39330077 | ITA | 7.52006927 | ESP | 1.86101073 | ZAF | 4.03358896 |
The simplest pie chart can be generated via the code below, which by default labels the pie sections with the percentage
of the total for the column being plotted. In this example we not indicate a specific column in the DataFrame
to plot,
in which case the first numeric column is chosen. Both the Swing version and Google version of this plot includes
informative tooltips with additional data as you mouse over each section.
Chart.create().withPiePlot(frame, false, chart -> {
chart.title().withText("Pie Chart of Random Data");
chart.subtitle().withText("Labels with Section Percent");
chart.legend().on().right();
chart.show();
});
A slight adjustment to the pie plot is to include a hole in order to create a donut chart. In this example we also
explicitly pass the name of the column to plot, although given that there is only one numeric column in the DataFrame
this is superfluous.
Chart.create().withPiePlot(frame, false, "Random", chart -> {
chart.title().withText("Donut Pie Chart of Random Data");
chart.subtitle().withText("Labels with Section Value");
chart.plot().withPieHole(0.4);
chart.plot().labels().on().withValue();
chart.legend().on().right();
chart.show();
});
Turning this into a 3D plot is as easy as passing in true
as the second argument to the withPiePlot()
method.
Chart.create().withPiePlot(frame, true, chart -> {
chart.title().withText("3D Pie Chart of Random Data");
chart.subtitle().withText("Labels with Section Name");
chart.plot().labels().on().withName();
chart.legend().on().right();
chart.show();
});
Calling out one or more pie sections is possible by imposing an offset from the center as shown below. In this case
we explicitly access the section controller for AUS
and apply an offset which must be a value between 0 and 1. In
addition, we have rotated the plot clockwise by 90 degrees by calling the withStartAngle()
method as illustrated.
Chart.create().withPiePlot(frame, false, chart -> {
chart.title().withText("Pie Chart of Random Data");
chart.subtitle().withText("Custom Label Style with Exploded Pie Section");
chart.plot().labels().withBackgroundColor(Color.WHITE).withFont(new Font("Arial", Font.BOLD, 11));
chart.plot().section("AUS").withOffset(0.2);
chart.plot().withStartAngle(90);
chart.legend().on().right();
chart.show();
});