Skip to content

zf020114/CHPDet

Repository files navigation

CHPDet

PyTorch implementation of "Arbitrary-Oriented Ship Detection through Center-Head Point Extraction", [pdf].

Highlights:

1. we propose a center-head point extraction based detector (named CHPDet) to achieve arbitrary-oriented ship detection in remote sensing images.

2. Our CHPDet achieves state-of-the-art performance on the FGSD2021, HRSC2016 and UCAS-AOD datasets with high efficiency.

2. we proposed a new dataset named FGSD2021 for multi-class arbitrary-oriented ship detection in remote sensing images at a fixed GSD.

Benchmark and model zoo (exact code 'nudt')

Model Backbone Dataset Rotate img_size Inf time (fps) box AP (ori./now) Download
CHPDet DLA-34_OIM FGSD2021 512x512 41.7 87.91 model
CHPDet Hourglass_104 HRSC2016 1024x1024 13.7 90.55 model

The FGSD2021 dataset is available at [DataSet] (exact code 'nudt')

Installation

The code was tested on Ubuntu 16.04, with Anaconda Python 3.7 and PyTorch v1.4.0. NVIDIA GPUs are needed for both training and testing. After installing Anaconda:

  1. [Optional but recommended] create a new conda environment.

    conda create --name CHPDet python=3.7
    

    And activate the environment.

    conda activate CHPDet
    
  2. Install PyTorch 1.4.0:

  3. Install COCOAPI:

    # COCOAPI=/path/to/clone/cocoapi
    git clone https://github.com/cocodataset/cocoapi.git $COCOAPI
    cd $COCOAPI/PythonAPI
    make
    python setup.py install --user
    
  4. Clone this repo:

    CHPDet_ROOT=/path/to/clone/CHPDet
    git clone https://github.com/zf020114/CHPDet $CHPDet_ROOT
    
  5. Install the requirements

    pip install -r requirements.txt
    
  6. Compile deformable convolutions (from DCNv2).

    cd $CHPDet_ROOT/src/lib/models/networks/DCNv2
    ./make.sh
    
  7. compile orn from s2anet cd $CHPDet_ROOT/src/lib/models/networks/orn bash make.sh

7.install DOTA_devkit to get the evel result 7.1. install swig

    sudo apt-get install swig

7.2. create the c++ extension for python

    swig -c++ -python polyiou.i
    python setup.py build_ext --inplace
  1. [Optional, only required if you are using extremenet or multi-scale testing] Compile NMS if your want to use multi-scale testing or test ExtremeNet.

    cd $CenterNet_ROOT/src/lib/external
    make
    
  2. Download pertained models for detection or pose estimation and move them to $CHPDet_ROOT/models/.

Prepare dataset.

Transform dataset to COCO format

1. prepare data as FGSD2021 using the tool labimg2 (https://github.com/chinakook/labelImg2),
Here, we give an example for image and annotation in ./Figs/

2. crop data to fixed size using ./src/0data_crop.py.

3. make json file using ./src/1make_json_anno.py.

4. check the json file by ./src/3show_json_anno.py

5. It is recommended to symlink the dataset root to `data/coco`.
  • Inference CHPDet on DOTA.
    1. download model to /exp/multi_pose/dla_USnavy512_RGuass1_12raduis_arf
    2. python test.py multi_pose --exp_id dla_USnavy512_RGuass1_12raduis_arf --dataset coco_hp --resume --debug 2

*If you want to evaluate the result on DOTA test-dev, zip the files in work_dirs/dardet_r50_fpn_1x_dcn_val/result_after_nms and submit it to the evaluation server.

Train a model

1.1. Train centernet-Rbb: python main.py ctdet --exp_id CenR_usnavy512_dla_2x --arch dla_34 --batch_size 26 --master_batch 14--lr 5e-4 --gpus 0,1 --num_workers 8 --num_epochs 230 --lr_step 180,210 --load_model ../exp/multi_pose_dla_3x.pth 1.2. test centernet-Rbb : python test.py ctdet --exp_id CenR_usnavy512_dla_2x --arch dla_34 --keep_res --resume

2.1 Train CHP_DLA_34:

python main.py multi_pose --exp_id dla_USnavy512_RGuass1_12raduis_arf --arch dlaarf_34 --dataset coco_hp --batch_size 28 --master_batch 16 --gpus 0,1 --lr 5e-4 --load_model ../exp/ctdet_coco_hg.pth --num_workers 8 --num_epochs 320 --lr_step 270,300 2.2 test CHP_DLA_34: python test.py multi_pose --exp_id dla_USnavy512_RGuass1_12raduis_arf --arch dlaarf_34 --dataset coco_hp --resume

eval a model

  1. Test the model to get a result.json file.
  2. Make DOTA format ground-truth file by ./src/4rotate_xml2DOTAtxt.py
    Here, we give an example for DOTA format ground-truth file in ./Figs/GT20_TxT
  3. run to eval on test set by run ./srv/5eval_json.py

Citation

If you find this project useful for your research, please use the following BibTeX entry.

@article{CHPDet, title={Arbitrary-Oriented Ship Detection through Center-Head Point Extraction}, author={Zhang, Feng and Wang, Xueying and Zhou, Shilin and Wang, Yingqian and Hou, Yi}, journal={IEEE Transactions on Geoscience and Remote Sensing}, year={2021}, publisher={IEEE} }

Contact

Any question regarding this work can be addressed to [email protected].

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published