forked from NVIDIA/NeMo
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Signed-off-by: Zeeshan Patel <[email protected]>
- Loading branch information
Showing
3 changed files
with
246 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,13 @@ | ||
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. |
173 changes: 173 additions & 0 deletions
173
nemo/collections/diffusion/models/dit_llama/dit_llama_layer_spec.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,173 @@ | ||
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import copy | ||
from typing import Literal | ||
|
||
from megatron.core.transformer.attention import ( | ||
CrossAttention, | ||
CrossAttentionSubmodules, | ||
SelfAttention, | ||
SelfAttentionSubmodules, | ||
) | ||
from megatron.core.transformer.custom_layers.transformer_engine import ( | ||
TEColumnParallelLinear, | ||
TEDotProductAttention, | ||
TERowParallelLinear, | ||
) | ||
from megatron.core.transformer.enums import AttnMaskType | ||
from megatron.core.transformer.identity_op import IdentityOp | ||
from megatron.core.transformer.mlp import MLP, MLPSubmodules | ||
from megatron.core.transformer.spec_utils import ModuleSpec, build_module | ||
from megatron.core.transformer.transformer_block import TransformerConfig | ||
from megatron.core.transformer.transformer_config import TransformerConfig | ||
from megatron.core.transformer.transformer_layer import TransformerLayer, TransformerLayerSubmodules | ||
from megatron.core.utils import make_viewless_tensor | ||
|
||
from nemo.collections.diffusion.models.dit.dit_layer_spec import AdaLN | ||
|
||
|
||
class MoviegGenLayer(TransformerLayer): | ||
"""A single transformer layer. | ||
Transformer layer takes input with size [s, b, h] and returns an | ||
output of the same size. | ||
DiT with Adapative Layer Normalization. | ||
""" | ||
|
||
def __init__( | ||
self, | ||
config: TransformerConfig, | ||
submodules: TransformerLayerSubmodules, | ||
layer_number: int = 1, | ||
hidden_dropout: float = None, | ||
position_embedding_type: Literal["learned_absolute", "rope"] = "learned_absolute", | ||
): | ||
def _replace_no_cp_submodules(submodules): | ||
modified_submods = copy.deepcopy(submodules) | ||
modified_submods.cross_attention = IdentityOp | ||
# modified_submods.temporal_self_attention = IdentityOp | ||
return modified_submods | ||
|
||
# Replace any submodules that will have CP disabled and build them manually later after TransformerLayer init. | ||
modified_submods = _replace_no_cp_submodules(submodules) | ||
super().__init__( | ||
config=config, submodules=modified_submods, layer_number=layer_number, hidden_dropout=hidden_dropout | ||
) | ||
|
||
# Override Cross Attention to disable CP. | ||
# Disable TP Comm overlap as well. Not disabling will attempt re-use of buffer size same as Q and lead to incorrect tensor shapes. | ||
cp_override_config = copy.deepcopy(config) | ||
cp_override_config.context_parallel_size = 1 | ||
cp_override_config.tp_comm_overlap = False | ||
self.cross_attention = build_module( | ||
submodules.cross_attention, | ||
config=cp_override_config, | ||
layer_number=layer_number, | ||
) | ||
|
||
self.adaLN = AdaLN(config=self.config, n_adaln_chunks=6) # , norm=TENorm) | ||
|
||
def forward( | ||
self, | ||
hidden_states, | ||
attention_mask, | ||
context=None, | ||
context_mask=None, | ||
rotary_pos_emb=None, | ||
inference_params=None, | ||
packed_seq_params=None, | ||
): | ||
# timestep embedding | ||
timestep_emb = attention_mask | ||
factorized_pos_emb = rotary_pos_emb | ||
hidden_states = hidden_states + factorized_pos_emb | ||
|
||
# ******************************************** full self attention ****************************************************** | ||
shift_full, scale_full, gate_full, shift_mlp, scale_mlp, gate_mlp = self.adaLN(timestep_emb) | ||
|
||
# adaLN with scale + shift | ||
pre_full_attn_layernorm_output_ada = self.adaLN.modulated_layernorm( | ||
hidden_states, shift=shift_full, scale=scale_full | ||
) | ||
|
||
attention_output, _ = self.self_attention( | ||
pre_full_attn_layernorm_output_ada, | ||
attention_mask=None, | ||
packed_seq_params=None if packed_seq_params is None else packed_seq_params['self_attention'], | ||
) | ||
|
||
hidden_states = self.adaLN.scale_add(residual=hidden_states, x=attention_output, gate=gate_full) | ||
|
||
# ******************************************** cross attention ****************************************************** | ||
attention_output, _ = self.cross_attention( | ||
hidden_states, | ||
attention_mask=context_mask, | ||
key_value_states=context, | ||
packed_seq_params=None if packed_seq_params is None else packed_seq_params['cross_attention'], | ||
) | ||
|
||
# ******************************************** mlp ****************************************************** | ||
pre_mlp_layernorm_output_ada = self.adaLN.modulated_layernorm( | ||
attention_output, shift=shift_mlp, scale=scale_mlp | ||
) | ||
|
||
mlp_output, _ = self.mlp(pre_mlp_layernorm_output_ada) | ||
hidden_states = self.adaLN.scale_add(residual=hidden_states, x=mlp_output, gate=gate_mlp) | ||
|
||
# Jit compiled function creates 'view' tensor. This tensor | ||
# potentially gets saved in the MPU checkpoint function context, | ||
# which rejects view tensors. While making a viewless tensor here | ||
# won't result in memory savings (like the data loader, or | ||
# p2p_communication), it serves to document the origin of this | ||
# 'view' tensor. | ||
output = make_viewless_tensor(inp=hidden_states, requires_grad=hidden_states.requires_grad, keep_graph=True) | ||
|
||
return output, context | ||
|
||
|
||
def get_dit_llama_spec() -> ModuleSpec: | ||
params = {"attn_mask_type": AttnMaskType.padding} | ||
return ModuleSpec( | ||
module=MoviegGenLayer, | ||
submodules=TransformerLayerSubmodules( | ||
self_attention=ModuleSpec( | ||
module=SelfAttention, | ||
params=params, | ||
submodules=SelfAttentionSubmodules( | ||
linear_qkv=TEColumnParallelLinear, | ||
core_attention=TEDotProductAttention, | ||
linear_proj=TERowParallelLinear, | ||
), | ||
), | ||
cross_attention=ModuleSpec( | ||
module=CrossAttention, | ||
params=params, | ||
submodules=CrossAttentionSubmodules( | ||
linear_q=TEColumnParallelLinear, | ||
linear_kv=TEColumnParallelLinear, | ||
core_attention=TEDotProductAttention, | ||
linear_proj=TERowParallelLinear, | ||
), | ||
), | ||
mlp=ModuleSpec( | ||
module=MLP, | ||
submodules=MLPSubmodules( | ||
linear_fc1=TEColumnParallelLinear, | ||
linear_fc2=TERowParallelLinear, | ||
), | ||
), | ||
), | ||
) |
60 changes: 60 additions & 0 deletions
60
nemo/collections/diffusion/models/dit_llama/dit_llama_model.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,60 @@ | ||
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
|
||
from typing import Literal | ||
|
||
from megatron.core.transformer.transformer_config import TransformerConfig | ||
|
||
from nemo.collections.diffusion.models.dit import dit_embeddings | ||
from nemo.collections.diffusion.models.dit.dit_model import DiTCrossAttentionModel | ||
from nemo.collections.diffusion.models.dit_llama.dit_llama_layer_spec import get_dit_llama_spec | ||
|
||
|
||
class DiTLlamaModel(DiTCrossAttentionModel): | ||
def __init__( | ||
self, | ||
config: TransformerConfig, | ||
pre_process: bool = True, | ||
post_process: bool = True, | ||
fp16_lm_cross_entropy: bool = False, | ||
parallel_output: bool = True, | ||
position_embedding_type: Literal["learned_absolute", "rope"] = "rope", | ||
max_img_h: int = 80, | ||
max_img_w: int = 80, | ||
max_frames: int = 34, | ||
patch_spatial: int = 1, | ||
patch_temporal: int = 1, | ||
in_channels: int = 16, | ||
out_channels: int = 16, | ||
**kwargs, | ||
): | ||
super().__init__( | ||
config=config, | ||
pre_process=pre_process, | ||
post_process=post_process, | ||
fp16_lm_cross_entropy=fp16_lm_cross_entropy, | ||
parallel_output=parallel_output, | ||
position_embedding_type=position_embedding_type, | ||
max_img_h=max_img_h, | ||
max_img_w=max_img_w, | ||
max_frames=max_frames, | ||
patch_spatial=patch_spatial, | ||
patch_temporal=patch_temporal, | ||
in_channels=in_channels, | ||
out_channels=out_channels, | ||
transformer_decoder_layer_spec=get_dit_llama_spec, | ||
pos_embedder=dit_embeddings.FactorizedLearnable3DEmbedding, | ||
**kwargs, | ||
) |