Skip to content

Commit

Permalink
implement conv3d op (apache#4400)
Browse files Browse the repository at this point in the history
* implement conv3d op

* add back missed conv2d_output_shape by mistake

* fix typo and docs, add topi test

* rebase to master and merge 2d/3d unification

* use cudnn.conv_forward
  • Loading branch information
optima2005 authored and Xingyu Zhou committed Dec 13, 2019
1 parent 1004139 commit 6cde692
Show file tree
Hide file tree
Showing 14 changed files with 983 additions and 1 deletion.
56 changes: 56 additions & 0 deletions include/tvm/relay/attrs/nn.h
Original file line number Diff line number Diff line change
Expand Up @@ -48,6 +48,7 @@ struct BiasAddAttrs : public tvm::AttrsNode<BiasAddAttrs> {
}
};


/*! \brief Attributes used in convolution operators */
struct Conv2DAttrs : public tvm::AttrsNode<Conv2DAttrs> {
Array<IndexExpr> strides;
Expand Down Expand Up @@ -193,6 +194,61 @@ struct Conv2DWinogradNNPACKWeightTransformAttrs
}
};

/*! \brief Attributes used in convolution operators */
struct Conv3DAttrs : public tvm::AttrsNode<Conv3DAttrs> {
Array<IndexExpr> strides;
Array<IndexExpr> padding;
Array<IndexExpr> dilation;
int groups;
IndexExpr channels;
Array<IndexExpr> kernel_size;
std::string data_layout;
std::string kernel_layout;
std::string out_layout;
DataType out_dtype;

TVM_DECLARE_ATTRS(Conv3DAttrs, "relay.attrs.Conv3DAttrs") {
TVM_ATTR_FIELD(strides).set_default(Array<IndexExpr>({1, 1, 1}))
.describe("Specifies the strides of the convolution.");
TVM_ATTR_FIELD(padding).set_default(Array<IndexExpr>({0, 0, 0}))
.describe("If padding is non-zero, then the input is implicitly zero-padded"
"on both sides for padding number of points");
TVM_ATTR_FIELD(dilation).set_default(Array<IndexExpr>({1, 1, 1}))
.describe("Specifies the dilation rate to use for dilated convolution.");
TVM_ATTR_FIELD(groups).set_default(1)
.describe("Controls the connections between inputs and outputs."
"At groups=1, all inputs are convolved to all outputs."
"At groups=2, the operation becomes equivalent to having two convolution"
"layers side by side, each seeing half the input channels, and producing"
"half the output channels, and both subsequently concatenated.");
TVM_ATTR_FIELD(channels)
.describe("The number of output channels in the convolution."
" If it is not set, inferred by shape of the weight.")
.set_default(NullValue<IndexExpr>());
TVM_ATTR_FIELD(kernel_size)
.describe("Specifies the dimensions of the convolution window.")
.set_default(NullValue<Array<IndexExpr> >());
TVM_ATTR_FIELD(data_layout).set_default("NCDHW")
.describe("Dimension ordering of input data. Can be 'NCDHW', 'NDHWC', etc."
"'N', 'C', 'D', 'H', 'W' stands for batch, channel, depth, height, and width"
"dimensions respectively. Convolution is applied on the 'D', 'H' and"
"'W' dimensions.");
TVM_ATTR_FIELD(kernel_layout).set_default("OIDHW")
.describe("Dimension ordering of weight. Can be 'OIDHW', 'OIDHW16o16i', etc."
"'O', 'I', 'D', 'H', 'W' stands for num_filter, input_channel, depth, height,"
"and width dimensions respectively.");
TVM_ATTR_FIELD(out_layout).set_default("")
.describe("Dimension ordering of output. Can be 'NCDHW', 'NDHWC', etc."
"'N', 'C', 'D', 'H', 'W' stands for batch, channel, depth, height, and width"
"dimensions respectively. Default to be same as input layout.");

// use 0 bits to indicate none.
TVM_ATTR_FIELD(out_dtype)
.set_default(NullValue<DataType>())
.describe("Output data type, set to explicit type under mixed precision setting");
}
};

/*! \brief Attributes used in softmax operators */
struct SoftmaxAttrs : public tvm::AttrsNode<SoftmaxAttrs> {
int axis;
Expand Down
43 changes: 42 additions & 1 deletion python/tvm/relay/op/nn/_nn.py
Original file line number Diff line number Diff line change
Expand Up @@ -142,7 +142,6 @@ def _find_conv2d_op(op):
return op_
return None


@reg.register_compute("nn.conv2d")
def compute_conv2d(attrs, inputs, out_type, target):
"""Compute definition of conv2d"""
Expand Down Expand Up @@ -278,6 +277,48 @@ def compute_conv2d_transpose(attrs, inputs, out_dtype, target):
return [out]


@reg.register_compute("nn.conv3d")
def compute_conv3d(attrs, inputs, out_type, target):
"""Compute definition of conv3d"""
padding = get_const_tuple(attrs.padding)
strides = get_const_tuple(attrs.strides)
dilation = get_const_tuple(attrs.dilation)
groups = attrs.groups
layout = attrs.data_layout
out_dtype = attrs.out_dtype
out_dtype = (inputs[0].dtype if out_dtype in ("same", "")
else out_dtype)

assert layout in ["NCDHW"]
(dilation_d, dilation_h, dilation_w) = dilation
if dilation_d < 1 or dilation_h < 1 or dilation_w < 1:
raise ValueError("dilation should be positive value")

if groups == 1:
out = topi.nn.conv3d(
inputs[0], inputs[1], strides, padding,
dilation, layout, out_dtype)
else:
raise ValueError("not support arbitrary group number for now")
return [out]


@reg.register_schedule("nn.conv3d")
def schedule_conv3d(attrs, outs, target):
"""Schedule definition of conv3d"""
groups = attrs.groups
layout = attrs.data_layout

with target:
if groups == 1 and layout == "NCDHW":
return topi.generic.schedule_conv3d_ncdhw(outs)

raise ValueError("No compatible schedule")


reg.register_pattern("nn.conv3d", OpPattern.OUT_ELEMWISE_FUSABLE)


@reg.register_schedule("nn.conv2d_transpose")
def schedule_conv2d_transpose(attrs, outs, target):
"""Schedule definition of conv2d_transpose"""
Expand Down
85 changes: 85 additions & 0 deletions python/tvm/relay/op/nn/nn.py
Original file line number Diff line number Diff line change
Expand Up @@ -106,6 +106,91 @@ def conv2d(data,
kernel_layout, out_layout, out_dtype)


def conv3d(data,
weight,
strides=(1, 1, 1),
padding=(0, 0, 0),
dilation=(1, 1, 1),
groups=1,
channels=None,
kernel_size=None,
data_layout="NCDHW",
kernel_layout="OIDHW",
out_layout="",
out_dtype=""):
r"""3D convolution.
This operator takes the weight as the convolution kernel
and convolves it with data to produce an output.
In the default case, where the data_layout is `NCDHW`
and kernel_layout is `OIDHW`, conv3d takes in
a data Tensor with shape `(batch_size, in_channels, depth, height, width)`,
and a weight Tensor with shape `(channels, in_channels, kernel_size[0], kernel_size[1],
kernel_size[2])` to produce an output Tensor with the following rule:
.. math::
\mbox{out}[b, c, z, y, x] = \sum_{dz, dy, dx, k}
\mbox{data}[b, k, \mbox{strides}[0] * z + dz, \mbox{strides}[1] * y + dy,
\mbox{strides}[2] * x + dx] * \mbox{weight}[c, k, dz, dy, dx]
Padding and dilation are applied to data and weight respectively before the computation.
This operator accepts data layout specification.
Semantically, the operator will convert the layout to the canonical layout
(`NCDHW` for data and `OIDHW` for weight), perform the computation,
then convert to the out_layout.
Parameters
----------
data : tvm.relay.Expr
The input data to the operator.
weight : tvm.relay.Expr
The weight expressions.
strides : Optional[Tuple[int]]
The strides of convolution.
padding : Optional[Tuple[int]]
The padding of convolution on both sides of inputs before convolution.
dilation : Optional[Tuple[int]]
Specifies the dilation rate to be used for dilated convolution.
groups : Optional[int]
Number of groups for grouped convolution.
channels : Optional[int]
Number of output channels of this convolution.
kernel_size : Optional[Tuple[int]]
The spatial of the convolution kernel.
data_layout : Optional[str]
Layout of the input.
kernel_layout : Optional[str]
Layout of the weight.
out_layout : Optional[str]
Layout of the output, by default, out_layout is the same as data_layout
out_dtype : Optional[str]
Specifies the output data type for mixed precision conv2d.
Returns
-------
result : tvm.relay.Expr
The computed result.
"""
return _make.conv3d(data, weight, strides, padding, dilation,
groups, channels, kernel_size, data_layout,
kernel_layout, out_layout, out_dtype)


def conv2d_transpose(data,
weight,
strides=(1, 1),
Expand Down
58 changes: 58 additions & 0 deletions src/relay/op/nn/convolution.cc
Original file line number Diff line number Diff line change
Expand Up @@ -106,6 +106,64 @@ with the layer input to produce a tensor of outputs.
.add_type_rel("Conv2D", Conv2DRel<Conv2DAttrs>)
.set_attr<FInferCorrectLayout>("FInferCorrectLayout", Conv2DInferCorrectLayout<Conv2DAttrs>);

// relay.nn.conv3d
TVM_REGISTER_NODE_TYPE(Conv3DAttrs);

// Positional relay function to create conv3d operator
// used by frontend FFI.
Expr MakeConv3D(Expr data,
Expr weight,
Array<IndexExpr> strides,
Array<IndexExpr> padding,
Array<IndexExpr> dilation,
int groups,
IndexExpr channels,
Array<IndexExpr> kernel_size,
std::string data_layout,
std::string kernel_layout,
std::string out_layout,
DataType out_dtype) {
auto attrs = make_node<Conv3DAttrs>();
attrs->strides = std::move(strides);
attrs->padding = std::move(padding);
attrs->dilation = std::move(dilation);
attrs->groups = groups;
attrs->channels = std::move(channels);
attrs->kernel_size = std::move(kernel_size);
attrs->data_layout = std::move(data_layout);
attrs->kernel_layout = std::move(kernel_layout);
attrs->out_layout = std::move(out_layout);
attrs->out_dtype = std::move(out_dtype);
static const Op& op = Op::Get("nn.conv3d");
return CallNode::make(op, {data, weight}, Attrs(attrs), {});
}


TVM_REGISTER_API("relay.op.nn._make.conv3d")
.set_body_typed(MakeConv3D);


RELAY_REGISTER_OP("nn.conv3d")
.describe(R"code(3D convolution layer (e.g. convolution over 3D image data,
like Magnetic Resonance Imaging (MRI) data in medicine).
This layer creates a convolution kernel that is convolved
with the layer input to produce a tensor of outputs.
- **data**: This depends on the `layout` parameter. Input is 5D array of shape
(batch_size, in_channels, depth, height, width) if `layout` is `NCDHW`.
- **weight**: (channels, in_channels, kernel_size[0], kernel_size[1], kernel_size[2])
- **out**: This depends on the `layout` parameter. Output is 5D array of shape
(batch_size, channels, out_depth, out_height, out_width) if `layout` is `NCDHW`.
)code" TVM_ADD_FILELINE)
.set_attrs_type<Conv3DAttrs>()
.set_num_inputs(2)
.add_argument("data", "Tensor", "The input tensor.")
.add_argument("weight", "Tensor", "The weight tensor.")
.set_support_level(2)
.add_type_rel("Conv3D", Conv3DRel<Conv3DAttrs>);


// relay.nn.conv2d_transpose
TVM_REGISTER_NODE_TYPE(Conv2DTransposeAttrs);
Expand Down
Loading

0 comments on commit 6cde692

Please sign in to comment.