Skip to content

A curated list of neural network pruning resources.

Notifications You must be signed in to change notification settings

201419/Awesome-Pruning

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

36 Commits
 
 

Repository files navigation

Awesome Pruning Awesome

A curated list of neural network pruning and related resources. Inspired by awesome-deep-vision, awesome-adversarial-machine-learning, awesome-deep-learning-papers and Awesome-NAS.

Please feel free to pull requests or open an issue to add papers.

Table of Contents

Type of Pruning

Type F W Other
Explanation Filter pruning Weight pruning other types

2020

Title Venue Type Code
Comparing Rewinding and Fine-tuning in Neural Network Pruning ICLR (Oral) WF TensorFlow(Author)
A Signal Propagation Perspective for Pruning Neural Networks at Initialization ICLR (Spotlight) W -
One-Shot Pruning of Recurrent Neural Networks by Jacobian Spectrum Evaluation ICLR W -
Lookahead: A Far-sighted Alternative of Magnitude-based Pruning ICLR W PyTorch(Author)
Dynamic Model Pruning with Feedback ICLR WF -
Provable Filter Pruning for Efficient Neural Networks ICLR F -
Data-Independent Neural Pruning via Coresets ICLR W -
AutoCompress: An Automatic DNN Structured Pruning Framework for Ultra-High Compression Rates AAAI F -
DARB: A Density-Aware Regular-Block Pruning for Deep Neural Networks AAAI Other -
Pruning from Scratch AAAI Other -

2019

Title Venue Type Code
Network Pruning via Transformable Architecture Search NeurIPS F PyTorch(Author)
Gate Decorator: Global Filter Pruning Method for Accelerating Deep Convolutional Neural Networks NeurIPS F PyTorch(Author)
Deconstructing Lottery Tickets: Zeros, Signs, and the Supermask NeurIPS W TensorFlow(Author)
One ticket to win them all: generalizing lottery ticket initializations across datasets and optimizers NeurIPS W -
Global Sparse Momentum SGD for Pruning Very Deep Neural Networks NeurIPS W PyTorch(Author)
AutoPrune: Automatic Network Pruning by Regularizing Auxiliary Parameters NeurIPS W -
Model Compression with Adversarial Robustness: A Unified Optimization Framework NeurIPS Other PyTorch(Author)
MetaPruning: Meta Learning for Automatic Neural Network Channel Pruning ICCV F PyTorch(Author)
Accelerate CNN via Recursive Bayesian Pruning ICCV F -
Adversarial Robustness vs Model Compression, or Both? ICCV W PyTorch(Author)
Learning Filter Basis for Convolutional Neural Network Compression ICCV Other -
Filter Pruning via Geometric Median for Deep Convolutional Neural Networks Acceleration CVPR (Oral) F PyTorch(Author)
Towards Optimal Structured CNN Pruning via Generative Adversarial Learning CVPR F PyTorch(Author)
Centripetal SGD for Pruning Very Deep Convolutional Networks with Complicated Structure CVPR F PyTorch(Author)
On Implicit Filter Level Sparsity in Convolutional Neural Networks, Extension1, Extension2 CVPR F PyTorch(Author)
Structured Pruning of Neural Networks with Budget-Aware Regularization CVPR F -
Importance Estimation for Neural Network Pruning CVPR F PyTorch(Author)
OICSR: Out-In-Channel Sparsity Regularization for Compact Deep Neural Networks CVPR F -
Partial Order Pruning: for Best Speed/Accuracy Trade-off in Neural Architecture Search CVPR Other TensorFlow(Author)
Variational Convolutional Neural Network Pruning CVPR - -
The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks ICLR (Best) W TensorFlow(Author)
Rethinking the Value of Network Pruning ICLR F PyTorch(Author)
Dynamic Channel Pruning: Feature Boosting and Suppression ICLR F TensorFlow(Author)
SNIP: Single-shot Network Pruning based on Connection Sensitivity ICLR F TensorFLow(Author)
Dynamic Sparse Graph for Efficient Deep Learning ICLR F CUDA(3rd)
Collaborative Channel Pruning for Deep Networks ICML F -
Approximated Oracle Filter Pruning for Destructive CNN Width Optimization github ICML F -
EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis4 ICML W PyTorch(Author)

2018

Title Venue Type Code
Rethinking the Smaller-Norm-Less-Informative Assumption in Channel Pruning of Convolution Layers ICLR F TensorFlow(Author), PyTorch(3rd)
To prune, or not to prune: exploring the efficacy of pruning for model compression ICLR W -
Discrimination-aware Channel Pruning for Deep Neural Networks NeurIPS F TensorFlow(Author)
Frequency-Domain Dynamic Pruning for Convolutional Neural Networks NeurIPS W -
Amc: Automl for model compression and acceleration on mobile devices ECCV F TensorFlow(3rd)
Data-Driven Sparse Structure Selection for Deep Neural Networks ECCV F MXNet(Author)
Coreset-Based Neural Network Compression ECCV F PyTorch(Author)
Constraint-Aware Deep Neural Network Compression ECCV W SkimCaffe(Author)
A Systematic DNN Weight Pruning Framework using Alternating Direction Method of Multipliers ECCV W Caffe(Author)
PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning CVPR F PyTorch(Author)
NISP: Pruning Networks using Neuron Importance Score Propagation CVPR F -
CLIP-Q: Deep Network Compression Learning by In-Parallel Pruning-Quantization CVPR W -
“Learning-Compression” Algorithms for Neural Net Pruning CVPR W -
Soft Filter Pruning for Accelerating Deep Convolutional Neural Networks IJCAI F PyTorch(Author)
Accelerating Convolutional Networks via Global & Dynamic Filter Pruning IJCAI F -

2017

Title Venue Type Code
Pruning Filters for Efficient ConvNets ICLR F PyTorch(3rd)
Pruning Convolutional Neural Networks for Resource Efficient Inference ICLR F TensorFlow(3rd)
Net-Trim: Convex Pruning of Deep Neural Networks with Performance Guarantee NeurIPS W TensorFlow(Author)
Learning to Prune Deep Neural Networks via Layer-wise Optimal Brain Surgeon NeurIPS W PyTorch(Author)
Runtime Neural Pruning NeurIPS F -
Designing Energy-Efficient Convolutional Neural Networks using Energy-Aware Pruning CVPR F -
ThiNet: A Filter Level Pruning Method for Deep Neural Network Compression ICCV F Caffe(Author), PyTorch(3rd)
Channel pruning for accelerating very deep neural networks ICCV F Caffe(Author)
Learning Efficient Convolutional Networks Through Network Slimming ICCV F PyTorch(Author)

2016

Title Venue Type Code
Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding ICLR (Best) W Caffe(Author)
Dynamic Network Surgery for Efficient DNNs NeurIPS W Caffe(Author)

2015

Title Venue Type Code
Learning both Weights and Connections for Efficient Neural Networks NeurIPS W PyTorch(3rd)

Related Repo

Awesome-model-compression-and-acceleration

EfficientDNNs

Embedded-Neural-Network

awesome-AutoML-and-Lightweight-Models

Model-Compression-Papers

knowledge-distillation-papers

Network-Speed-and-Compression

About

A curated list of neural network pruning resources.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published